This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

# COPPER(II) COORDINATION COMPOUNDS: CLASSIFICATION AND ANALYSIS OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA IV. TRIMERIC AND OLIGOMERIC COMPOUNDS

Milan Melník<sup>a</sup>; Mária Kabešová<sup>a</sup>; Marian Koman<sup>a</sup>; L'ubov Macáškova<sup>a</sup>; Clive E. Holloway<sup>b</sup> <sup>a</sup> Department of Inorganic Chemistry, Slovak Technical University, Bratislava, Slovak Republic <sup>b</sup> Department of Chemistry, York University, Ontario, Canada

**To cite this Article** Melník, Milan , Kabešová, Mária , Koman, Marian , Macáškova, L'ubov and Holloway, Clive E.(1999) 'COPPER(II) COORDINATION COMPOUNDS: CLASSIFICATION AND ANALYSIS OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA IV. TRIMERIC AND OLIGOMERIC COMPOUNDS', Journal of Coordination Chemistry, 48: 3, 271 – 374

To link to this Article: DOI: 10.1080/00958979908024557 URL: http://dx.doi.org/10.1080/00958979908024557

# PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1999, Vol. 48, pp. 271--374 Reprints available directly from the publisher Photocopying permitted by license only

## Review

# COPPER(II) COORDINATION COMPOUNDS: CLASSIFICATION AND ANALYSIS OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA IV. TRIMERIC AND OLIGOMERIC COMPOUNDS\*

## MILAN MELNÍK<sup>a,†</sup>, MÁRIA KABEŠOVÁ<sup>a</sup>, MARIAN KOMAN<sup>a</sup>, L'UBOV MACÁŠKOVÁ<sup>a</sup> and CLIVE E. HOLLOWAY<sup>b</sup>

<sup>a</sup>Department of Inorganic Chemistry, Slovak Technical University, SL-81237 Bratislava, Slovak Republic; <sup>b</sup>Department of Chemistry, York University, 4700 Keele Str., North York, M3J 1P3, Ontario, Canada

(Received 12 January 1998; Revised 18 March 1998; In final form 25 February 1999)

This review summarizes data for over two hundred and thirty trimeric and oligomeric copper(II) coordination compounds. Included are trimeric (73), tetrameric (135), pentameric (5), hexameric (12), octameric (5), nonameric (2) and even dodecameric (1) derivatives. In most complexes, the copper(II) is four-, five- and six-coordinate. The structures are discussed in terms of the coordination about the copper(II) atoms, and correlation's are drawn between donor atom, bond length and interbond angles. There are several examples of distortion isomerism.

Keywords: Review; copper(II); crystallography; structures; trimeric; oligomers

#### CONTENTS

# ABBREVIATIONS2721INTRODUCTION2772TRIMERIC COPPER(II) COMPOUNDS277

<sup>\*</sup> Part III. J. Coord. Chem. 45, 147 (1998).

<sup>&</sup>lt;sup>†</sup>Corresponding author.

M. MELNÍK et al.

| 3 | TETRAMERIC COPPER(II) COMPOUNDS          | 306 |
|---|------------------------------------------|-----|
| 5 | 3.1 $Cu_4(u_4-O)$ Tetrahedron            | 306 |
|   | 3.2 Cubane Type                          | 313 |
|   | 3.3 Bifolded Dimers                      | 338 |
|   | 3.4 Chain Structures                     | 339 |
|   | 3.5 Step-like Structures                 | 340 |
|   | 3.6 Unique Structures                    | 342 |
| 4 | PENTAMERIC COPPER(II) COMPOUNDS          | 347 |
| 5 | HEXAMERIC COPPER(II) COMPOUNDS           | 351 |
| 6 | OCTA-, NONA-, AND DODECAMERIC COPPER(II) |     |
|   | COMPOUNDS                                | 359 |
| 7 | CONCLUSIONS                              | 368 |
| A | cknowledgements                          | 369 |
| R | eferences                                | 369 |
|   | ·                                        |     |

# ABBREVIATIONS

| ac      | acetate                                             |
|---------|-----------------------------------------------------|
| acac    | 2,4-pentadionate                                    |
| ade     | adenine                                             |
| ae      | 7-amino-4-methyl-5-aza-3-hepten-2-onate             |
| ahd     | $\beta$ -alaninhydroxamate                          |
| ain     | 7-azaindole                                         |
| amat    | 4,4,9,9-tetramethyl-5,8-diazadodecane-2,11-diolate  |
| amp     | 2-amino-2-methyl-1-propanolate                      |
| amo     | 8-amino-5-aza-4-methyl-3-octane-2-onate             |
| ap      | 3-aminopropanolate                                  |
| apae    | [(3-aminopropyl)amino]ethanolate                    |
| at      | 8-amino-5-aza-4-methyl-3-octen-2-onate              |
| bapa    | bis(3-aminopropyl)amine                             |
| bc      | 3,5-di-tertbutyl-1,2-catecholate                    |
| bibo    | 3-(benzylimino)butanone-2-oximate                   |
| bipyam  | bipyridilamine                                      |
| bipyamH | bis(2-pyridyl)amide                                 |
| 5B6map  | 5-bromo-6-methyl-2-aminopyridinium                  |
| bpen    | 1,5-bis[1-(pyridin-2-yl)ethylideneamino]pentan-3-ol |
| bpim    | 4,5-bis[2-(2-pyridyl)ethyliminomethyl]imidazole     |
| bpy     | 2,2'-bipyridine                                     |
| 4-Brbz  | 4-bromobenzoate                                     |
| bsmnp   | 2,6-bis{(salicylideneamino)methyl}-4-nitrophenole   |
| bta     | benzotriazolate                                     |

272

| bttt                            | 13,26-di-tert-butyl-3,9,17,23-tetraazatetracyclo<br>[23,3,1,1 <sup>11,15</sup> ]tiaconta-1(29),2,9,11,13,15(30)                   |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                 | 16 23 25 27 december 6 20 29 30 tetraol                                                                                           |
| hz                              | henzoate                                                                                                                          |
| bzac                            | benzovlacetonate                                                                                                                  |
|                                 | oubic                                                                                                                             |
| c<br>adm                        | cubic                                                                                                                             |
| cup                             | 2.2 dihydroxy hangeldehyde with aminoellydryridine                                                                                |
|                                 | 2,3-dinydroxy-benzaidenyde with aninoalkypyridine                                                                                 |
| $C_8H_{11}NO_3$                 | 2.4 nontadiana and 2 aminosthanol                                                                                                 |
|                                 | 2,4-pentatione and 2-annioethation                                                                                                |
| $C_9H_9NO_2$                    | product of condensation of 2-oxyethylamine and                                                                                    |
|                                 | 2-oxy-1-benzaidenyde                                                                                                              |
| $C_{11}H_{19}N_2O_2$            | 2 amine 1 propagel                                                                                                                |
| CUNOS                           | dithiogramid S athenol propulation                                                                                                |
| $C_{12}H_{22}N_2O_2S_4$         | 4 10 bic(2 budrowysthyl) 1.7 diava                                                                                                |
| $C_{12}H_{24}N_2O_4$            | 4,10-bis(2-fiyuroxyethyr)-1,7-dioxa-                                                                                              |
|                                 | 4,10-diazacyclodccalic                                                                                                            |
| $C_{12}H_{24}N_4O_2$            | N, N - up to py annue - 2, 2 - uniterny i-oxannuale                                                                               |
| $C_{13}H_{13}N_2O_3$            | 3-[(2-pyridyl)methyliminomethyljbenzene-1,2-diolate                                                                               |
| $C_{15}H_{13}N_4O_2$            | 1,2-dipnenyi-2-(meinyiimino)ethanone-1-oxime                                                                                      |
| $C_{16}H_{14}N_2O_3$            | 2'-azabut-1'-en-1'-yl)]5-hydroxymethyl-                                                                                           |
| C. H. N.O.                      | 3-hydroxy-5-hydroxymethyl-4-(4 <sup>7</sup> -hydroxy-                                                                             |
| $C_{1611_{161}}$                | 4'-nhenvl-2-222 hut-1'-en-1'-vl)-2-methylpyridine                                                                                 |
| C H N.O.                        | 4 - phony - 2 - azaout - 1 - on - 1 - y1) - 2 - mothyl pythome3 - bydroxy - 5 - bydroxy methyl - 4 - (4' - bydroxy - 3' - methyl- |
| $C_{17} \Pi_{18} \Pi_{2} O_{3}$ | $\frac{1}{2}$ henry $\frac{1}{2}$ a zahut $\frac{1}{2}$ en $\frac{1}{2}$ where $\frac{1}{2}$ methylowidine                        |
|                                 | N N diethyl N/ (3 hydroxynronyl)ethylene diaminate                                                                                |
| $C_{18}\Pi_{42}N_4O_2$          | tritonia hava aza magraguela                                                                                                      |
| $C_{18}\Pi_{42}N_6O_3$          | 2.6 bis(NJ2.4 imidagelul)athulliminomethul)                                                                                       |
| $C_{19} \Pi_{21} \Pi_{6} O$     | 4-methylphenol                                                                                                                    |
| $C_{20}H_{24}N_2O$              | 4,7-bis(2-hydroxybenzyl)-1-oxa-4,7-diazacyclononane                                                                               |
| 2-Clpr                          | 2-chloropropionate                                                                                                                |
| Clac                            | chloroacetate                                                                                                                     |
| Cl <sub>2</sub> ac              | dichloroacetate                                                                                                                   |
| Cl <sub>3</sub> ac              | trichloroacetate                                                                                                                  |
| сра                             | 2-carboxypentonate                                                                                                                |
| dapdH <sub>2</sub>              | 2,6-diacetylpyridine dioxime                                                                                                      |
| dapo                            | 1,3-diamino-2-propanolate                                                                                                         |
| dapoH                           | 1,3-diamino-2-propanol                                                                                                            |
| dbae                            | 2-dibutylaminoethanolate                                                                                                          |

| 274                 | M. MELNIK et al.                                    |
|---------------------|-----------------------------------------------------|
| dbm                 | dibenzoylmethanate(1,4-diphenyl-1,3-propanedionate) |
| dea                 | 2-(diethylamino)acetamidoxime                       |
| deae                | 2-diethylaminoethanolate                            |
| dfmph               | 2,6-diformyl-4-methylphenol dibenzoylhydrazone      |
| dip                 | 2,6-diacetylpyridinebis(picolinoylhydrazonate)      |
| dmae                | 2-dimethylaminoethanolate                           |
| dmap                | 1,3-bis(dimethylamino)-2-propanolate                |
| dmcpz               | 3,5-dimethoxycarbonylpyrazole                       |
| dmf                 | dimethylformamide                                   |
| dmg                 | dimethylglyoximate                                  |
| dmppz               | 3,4-dimethyl-5-phenylpyrazole                       |
| dmpz                | 3,5-dimethylpyrazole                                |
| dpae                | 2-dipropylaminoethanolate                           |
| dpg                 | diphenylglyoximate                                  |
| dpm                 | 2,2,6,6-tetramethyl-3,5-hepta7dionate               |
| edta                | ethylenediaminetetraacetate                         |
| eha                 | N,N'-ethylenebis(o-hydroxyacetopheniminate)         |
| eia                 | 7-hydroxy-4-methyl-5-azahept-4-en-2-an              |
| en                  | ethylenediamine                                     |
| es                  | N,N'-ethylenebis(salicylaldiminate)                 |
| Etac                | ethylacetate                                        |
| ettmd               | 4-ethyl-1,1,7,7-tetramethyldiethylenetriamine       |
| Ettmio              | 4-ethyl-2,2,5,5-tetramethyl-3-imidazoline-1-oxyl    |
| Et <sub>2</sub> dtc | bis(diethyldithiocarbamate)                         |
| Et <sub>2</sub> na  | N,N-diethylnicotiamide                              |
| Fac                 | fluoroacetate                                       |
| F <sub>3</sub> ac   | trifluoroacetate                                    |
| fptsc               | 2-formylpyridinetiosemicarbazone                    |
| gmp                 | guanosine-3'-monophosphate                          |
| hfac                | 1,1,1,5,5,5-hexafluoro-2,4-pentadionate             |
| hmt                 | hexamethylenetetraamine                             |
| hsd                 | hexa Schiff base macrocycle                         |
| hx                  | hexagonal                                           |
| im                  | imidazole                                           |
| imp                 | N,N'-imidopicolinyloxamylhydrazine                  |
| inicNO              | isonicotinato N-oxide                               |
| inp                 | 5'-inasinemonophosphate                             |
| ipe                 | $\beta$ -diketonate                                 |
| ipte                | 2-(isopropylthio)ethanole                           |
| m                   | monoclinic                                          |
|                     |                                                     |

## COPPER(II) COMPLEXES, PART IV

| 30m                         | 30-membered macrocyclic ring                                                                      |
|-----------------------------|---------------------------------------------------------------------------------------------------|
| mal                         | malonate                                                                                          |
| 3-mapH                      | 3-methyl-2-aminopyridinium                                                                        |
| 4-mapH                      | 4-methyl-2-aminopyridinium                                                                        |
| md                          | macrocycle derived from 2-hydroxy-5-methyliso-<br>pthalaldehyde and 3-dimethylamino-1-propylamine |
| me                          | methoxyethanole                                                                                   |
| Meacpz                      | 1-(1-ethanoyl)-5-methylpyrazolate                                                                 |
| Meim                        | N-methylimidazole                                                                                 |
| 1,2-Me <sub>2</sub> im      | 1,2-dimethylimidazole                                                                             |
| 2-Mepy                      | 2-methylpyridine                                                                                  |
| 4-MepyH                     | 4-methylpyridinium                                                                                |
| Mepz                        | 3(5)-methylpyrazolate                                                                             |
| Me <sub>2</sub> pba         | 2,2-dimethyl-1,3-propanediyl-bis(oximato)                                                         |
| Me <sub>3</sub> pzH         | 1,1,4-trimethylpiperazinium                                                                       |
| metz                        | 3-methyl-4-ethyl-1,2,4-triazole                                                                   |
| mob                         | 1,3-bis(2-methyl-4,6,8-octanetrion-8-yl)benzenate                                                 |
| mor                         | morpholine                                                                                        |
| mpd                         | N-methyl-2-pyrrolidine                                                                            |
| mpi                         | 1,3-bis{2-(4-methylpyridyl)imino}isoindoline                                                      |
| mppc                        | 3,6-bis{(4-methylpiperazino)methyl}-pyrocatecholate                                               |
| msp                         | N-methyl-N'-(4-methoxysalicylidene)-1,3-                                                          |
| -                           | propanediamine                                                                                    |
| mttt                        | 13,26-dimethyl-3,9,17,23-tetraazatetracyclo                                                       |
|                             | [23.3.1.1. <sup>11,15</sup> ]triaconta-1(29),2,9,11,13,15(30),                                    |
|                             | 16,23,25,27-decaene-6,20,29,30-tetraol                                                            |
| N(2-amet)pipzH <sub>3</sub> | N-(2-ammonioethyl)piperazinium                                                                    |
| nicNO                       | nicotinato-N-oxide                                                                                |
| nitet                       | ethyl nitronyl nitroxide                                                                          |
| nitppy                      | 2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-                                                   |
| oxy-                        | 3-oxide                                                                                           |
| nmpH                        | methylphenethylammonium                                                                           |
| nmpzH                       | N-methylpiperazinium                                                                              |
| or                          | orthrombic                                                                                        |
| oxpn                        | N,N'-bis(3-aminopropyl)oxamide                                                                    |
| paa                         | pyridoxic acid                                                                                    |
| pambo                       | 2-propylamino-2-methyl-3-butanone oximate                                                         |
| pba                         | 1,3-propanediyl-bis(oximato)                                                                      |
| phen                        | phenanthroline                                                                                    |
| phoac                       | phenoxyacetate                                                                                    |

M. MELNİK et al.

| phtmio               | 4-phenyl-2,2,5,5-tetramethyl-3-imidazoline-1-oxyl      |
|----------------------|--------------------------------------------------------|
| pibo                 | 3-(phenylimino)butanone-3-oximate                      |
| pi                   | piperidine                                             |
| pip                  | 2-[2-(2-pyridyl)ethyliminomethyl]pyridine              |
| pmd                  | N,N,N',N'',N''-pentamethyldiethylenetriamine           |
| pp                   | 1-(2-pyridinyl)-2-propanonate                          |
| ppt                  | 3-(pyridin-2-yl)-5-(pyrazin-2-yl)-1,2,4-triazolate     |
| Pr <sup>i</sup> tmio | 4-isopropyl-2,2,5,5-tetramethyl-3-imidazoline-1-oxyl   |
| pte                  | 2-(propylthio)ethanole                                 |
| ру                   | pyridine                                               |
| русо                 | pyridine-2-carbaldehyde oximate                        |
| pym                  | 5-methylpyrimidine                                     |
| pysad                | N-2-pyridulsalicylaldimine                             |
| pz                   | pyrazole                                               |
| qo                   | 4-chloro-1-benzoquinone-2-oximate                      |
| qu                   | quinoline                                              |
| 3-quin               | 3-quinuclidinone                                       |
| rh                   | rombohedral                                            |
| R,S-Hpa              | R,S-2-aminopropan-1-ol                                 |
| R,S-pa               | R,S-2-aminopropan-1-olate                              |
| salen                | N,N'-ethylenebis(salicylideneiminate)                  |
| salpd                | N,N'-disalicylidene-1,3-propanediamine                 |
| sed                  | N,N'-[4-methyl-4-azaheptane-1,7-                       |
|                      | diyl]bis(salicylaldiminate)                            |
| sl                   | 1,2-bis(benzimidazol-2-yl)-1-hydroxyethane             |
| tac                  | 1,4,7-triazacyclononane                                |
| tcp                  | 2,4,6-trichlorophenolate                               |
| tde                  | thiodiethanole                                         |
| tepz                 | thioether-pyrazine                                     |
| terpy                | 2,2':6',2'-terpyridine                                 |
| tftbd                | 4,4,4-trifluoro-1-(2-thienyl)butane-1,3-dionate        |
| tg                   | tetragonal                                             |
| thf                  | tetrahydrofurane                                       |
| tmso                 | tetramethylsulfone                                     |
| tmtac                | 1,4,7-trimethyl-1,4,7-triazacyclononane                |
| tnl                  | 1,4,6,9-tetrakis{2-(2-pyridil)amino}benzodi pyridazine |
| tpa                  | tris(2-pyridyl)amine                                   |
| tr                   | triclinic                                              |
| trg                  | trigonal                                               |
| tris                 | tris(hydroxymethyl)methylamine                         |
| urid                 | uridine                                                |

276

#### **1 INTRODUCTION**

The chemistry of copper compounds has been extensively investigated, and the relationship between structure and reactivity, ranging from industrial catalysis to biomedical activity, is of major importance. The overwhelming majority of all X-ray crystallographic studies of transition metal compounds are of copper compounds. Although copper in oxidation state +2 is the most common by far, other known oxidation states observed include +1, +3 and +4, and of these copper(I) is the most common. The structural chemistry of almost one thousand published copper(I) structures has been reviewed recently.<sup>1</sup> The structural chemistry of mixed-valence, Cu(I)–Cu(II) compounds has also been reviewed.<sup>2</sup> We reported on the structural aspects of copper(II), finding over two thousand monomeric copper(II) compounds.<sup>3,4</sup> There are over nine hundred dimeric copper(II) compounds for which structural data were analyzed in our review article.<sup>5</sup>

To date there has not been a comprehensive overview of trimeric and oligomeric copper(II) structural chemistry, and this report is aimed at providing such a survey up to 1992.

This review includes over two hundred and thirty published oligometric copper(II) structures which have been analyzed and classified in order to assist in understanding the stereochemical interactions in the coordination sphere of copper(II) oligometric species.

The compounds discussed have been sorted by increasing number of copper(II) atoms; trimeric, tetrameric, pentameric, hexameric, octameric, nonameric and dodecameric.

#### 2 TRIMERIC COPPER(II) COMPOUNDS

Crystallographic and structural data for trimeric copper(II) compounds are gathered in Table I. There are over seventy examples mostly green and blue, but some red/purple and even yellow and black, for which crystallographic data are available. From the structural point of view, these compounds are very complex. Structures of  $[Cu_3(\mu\text{-bipyamH})_4X_2]$  (X = Cl or Br)<sup>6</sup> are isomorphores. The  $Cu_3N_{12}X_2$  complexes involve nearly linear  $Cu_3$  units, Cu-Cu-Cu 178.4° (mean), terminated by the two halide anions. The four separate bipyamH ligands act as tridentate ligands, involving coordination to the three Cu(II) atoms, with Cu-Cu distances of 2.461(1) and 2.471(1)Å for X = Br and X = Cl, respectively. These distances are the shortest found in the series of trimeric copper(II) derivatives. The central Cu atom in both

structures involves a four-coordinate, rhombic, coplanar CuN<sub>4</sub> center generated by the central amido nitrogens of the four bipyamH ligands. The two terminal Cu atoms involve a square-based pyramidal CuN<sub>4</sub>X structures, generated by the terminal pyridine nitrogens of the four bipyamH ligands and an apical halide anion.

The structure of the blue sample<sup>7</sup> was considered as a cryptate of a cationic cluster  $[Cu_3(OH)_2]^{4+}$  held inside the macrocyclic cavity of the ligand. The complex cation,  $[Cu_3(OH)_2(C_{18}H_{42}N_6O_3)]^{4+}$ , has three-fold symmetry. This cluster is composed of three equivalent Cu(II) atoms, bridged by two triply bound N-hydroxo groups, each Cu(II) atom is coordinated to an ethylenediamine subunit and is held inside the cavity of the macrocycle in a cryptate fashion, with a Cu–Cu distance of 2.808(3) Å. The coordination polyhedron of each copper is a very elongated octahedron with two long range interactions along  $d_2^2$ , Cu–O (ethers of macrocycle) = 2.605 Å (mean).

There are nine examples<sup>8-16</sup> with a Cu<sub>3</sub>OH core held by peripheral bridging ligands. In five of these examples<sup>8,9,11,14,15</sup> the geometry at each copper(II) atom is a distorted square-based pyramid. In another two,<sup>10,11</sup> one Cu(II) atom is in a square-planar arrangement and the remaining two copper(II) atoms are square-based pyramids. In one,<sup>13</sup> a Cu(II) atom has a trigonal-bipyramidal environment and another two Cu(II) atoms form a tetragonal-bipyramidal. Finally, in the remaining structure<sup>16</sup> two copper(II) atoms are square-pyramidal and the other is *pseudo*-octahedral. The Cu–Cu separation in the series of these nine examples ranges from 3.1935(8) to 3.351(1) Å (mean values). There is interdependence between Cu–Cu distances and Cu–OH–Cu bridge angles, with the angle opening when length increases. For example, 3.1935(8) Å and 105.1(1)°,<sup>8</sup> 3.220(3) Å and 108.2(4)°;<sup>14</sup> 3.246(3) Å and 110.9(3)°;<sup>14</sup> 3.351(1) Å and 114.5(1)°.<sup>16</sup> The Cu–O(H) bond distance long ranges from 1.946 to 2.045 Å with a mean value of 2.00 Å.

There are twenty-one examples<sup>17-34</sup> which contain a linear or almost linear trimeric array of copper atoms doubly bridged. This type of bridging, with a pair of two bridging ligands, is the most common. In twelve derivatives<sup>17-27</sup> four O-bridging ligands, and in the remaining derivatives four chlorine<sup>28-31,33,34</sup> or four bromine atoms<sup>32</sup> held together a linear trimeric array of copper atoms.

In violet-blue<sup>17</sup> three copper atoms are arranged linearly with Cu–Cu separations of 2.902(1) Å, the shortest in this series. The geometry around the two terminal copper atoms was described as a slightly distorted square pyramid with the deviation of copper in the direction of the axial site by 0.08 Å. The central copper atom has a square-planar environment (Table I).

A blue compound<sup>18</sup> is formed of trimeric  $[Cu_3(\mu-ap)_4(dmf)^{2+}$  cations and hexanuclear  $[Cu_6I_{10}]^{4-}$  anions. The copper(II) atom in the middle of the trimer has a tetrahedrally distorted coordination. The four alkoxy oxygen atoms with the copper atom form a CuO<sub>4</sub> structure with the mean Cu-O, (bridge) distance of 1.914(7) Å. The two structural copper(II) atoms differ, one has square-planar and the other a square-pyramidal geometry. The Cu-Cu distances in the trinuclear cation are 2.914(1) and 2.945(1) Å. In the hexanuclear anion the Cu(I)-Cu(I) distances vary from 2.537(2) to 2.730(2) Å. The structure of another mixed valence derivative<sup>19</sup> is similar.

The trimer,  $Cu_3(\mu-pp)_{6}$ ,<sup>20</sup> has a distorted octahedrally-coordinated central Cu(II) atom and distorted square-pyramidal terminal Cu(II) atoms. The molecule  $Cu_3(\mu-C_{12}H_{24}N_2O_4)_2^{-21}$  contains a linear trimeric array of copper atoms in which the central copper has a square-planar environment and the two terminal copper atoms are *pseudo*-octahedral.

In another two derivatives<sup>22,25</sup> all copper(II) atoms are four-coordinate with mean Cu–Cu separations of  $2.938(1)^{22}$  and 3.017(1) Å,<sup>25</sup> respectively.

In  $[Cu_3(\mu-eha)_2(H_2O)](ClO_4)_2$  and  $[Cu_3(\mu-es)_2(H_2O)_2](ClO_4)_2 \cdot H_2O^{23}$  a pair of Cu(eha) and Cu(es) chelate complexes act as bidentate ligands to the central copper atom, bonding through the oxygen atoms which act as bridges (Table I). Significantly, the Cu–Cu separation and especially Cu–Cu–Cu angle are different, with the values 2.963(5) Å mean and 156.2° in the former and 3.023(2) Å (mean) and 97.3(4)° in the latter.

The structure of a dark blue derivative<sup>24</sup> is formed of almost linear alkoxo-bridged copper(II) trimers in which the Cu–Cu–Cu angle is  $175.04(2)^{\circ}$  and the Cu–Cu distances are 2.9516(5) and 3.0106(5) Å. In a red-brown complex<sup>26</sup> the values are  $138(1)^{\circ}$  and 3.09(1) Å, while in a green complex<sup>27</sup> the copper(II) atoms exhibit octahedral and square-pyramidal coordination. One octahedron is connected to two pyramids leading to formation of a cluster of stoichiometry Cu<sub>3</sub>O<sub>12</sub> with a Cu–Cu distance of 3.372(1) Å. There is interdependence between the Cu–Cu distances and the Cu–O–Cu bridge angles. When the distance is elongated the angle is opened. For example, 2.902(1) Å and 98.9(3)°;<sup>17</sup> 2.938(1) Å and  $100.9(2)^{\circ};^{22}$  3.017(1) Å and  $102.4(6)^{\circ};^{25}$  and 3.372(1) Å and  $104.2(1)^{\circ}.^{27}$ 

When chlorine or bromine serve as bridges<sup>28-34</sup> the Cu-Cu separations vary from 3.331(4) to 3.686 Å and the Cu-X-Cu bridge angles vary from 89.8° to 94.5° (Table I).

Structures of the blue<sup>35</sup> and green<sup>36</sup> derivatives consist of linear trimers of copper(II) atoms which are triply bridged by O donor ligands (Table I). The central and terminal copper atoms are nonequivalent, while the coordination sphere of the central copper atom, CuO<sub>6</sub>, has a symmetry close to  $D_{4h}$ 

in both derivatives.<sup>35,36</sup> The two outer copper atoms which are fivecoordinate differ in the blue complex,<sup>35</sup> CuO<sub>4</sub>N is square-pyramidal while in the green complex<sup>36</sup> CuO<sub>3</sub>N<sub>2</sub> is trigonal-bipyramidal. The Cu–Cu separation is 3.126(1) Å in the former and 3.319(1) Å in the latter.

There are four derivatives  $3^{7-40}$  in which three copper(II) atoms are doubly bridged by two O donor ligands and two carboxylate groups in the manner.



The central and terminal copper atoms are nonequivalent. While in one complex<sup>37</sup> the central copper(II) atom has a square-planar coordination (CuO<sub>4</sub>), the terminal copper(II) atoms are square-pyramidal (CuO<sub>5</sub>). In another two derivatives,<sup>38,39</sup> the central copper has a tetragonal-bipyramidal configuration (CuO<sub>6</sub>) with the terminal copper square-planar (CuO<sub>3</sub>N). In another<sup>40</sup> each copper(II) is penta-coordinate (CuO<sub>5</sub>), an elongated square-pyramid for the central copper atom and a tetrahedrally-distorted square-pyramid for the terminal copper atoms. The Cu–Cu separations are 3.035,<sup>37</sup> 3.188(1),<sup>38</sup> 3.211(6)<sup>39</sup> and 3.365(1) Å.<sup>40</sup>

The structure of dark green,  $Cu_3(\mu$ -dmap)<sub>2</sub>Cl<sub>4</sub><sup>41</sup> is shown in Figure 1. The oxygen atom O(1) in one of the dmap ligands is bonded to three Cu(II) atoms with the mean Cu-O(1) distance of 2.05(1) Å. The oxygen atom O(2) in the other dmap ligand bridges two copper(II) atoms with a mean Cu-O(2) distance of 1.905(10) Å. The geometry of Cu(1) is a distorted square-pyramid and geometries around the remaining two copper(II) atoms Cu(2) and Cu(3) is square-planar with different degrees of distortion. The separations between these three metal centers span a considerable range: Cu(1)-Cu(2) = 3.378(4) Å, Cu(1)-Cu(3) = 3.027(4) Å and Cu(2)-Cu(3) = 3.200(3) Å.

The three copper(II) atoms in the  $[Cu_3(\mu-dapo)_3(\mu-O_2NO)]^{2+}$  cation<sup>42</sup> form an exact equilateral triangle with one of the bridging oxygens on the three-fold axis. The Cu-Cu separations are 3.321(2), 3.458(3) and 3.657(3) Å with a Cu-Cu-Cu angle of 55.6(1)°. The Cu-O-Cu bridge angles are 117.2(3)°, 125.4(6)° and 139.5(3)°. The coordination spheres of the two copper atoms are square-pyramidal (CuO<sub>3</sub>N<sub>2</sub>) and that of the remaining copper is square-planar (CuO<sub>2</sub>N<sub>2</sub>).

The structure of a dark blue derivative<sup>43</sup> is similar to that above,<sup>42</sup> with Cu-Cu separations of 3.420(3), 3.450(3) and 3.694(3) Å and Cu-O-Cu bridge angles of  $121.0(5)^\circ$ ,  $123.5(5)^\circ$  and  $139.0(5)^\circ$ .

There are four derivatives<sup>44-46</sup> in which two tetradentate ligands act as two-atom bridges between three copper(II) atoms. In one<sup>44</sup> each copper



FIGURE 1 Structure of Cu<sub>3</sub>(µ-dmap)<sub>2</sub>Cl<sub>4</sub>.<sup>41</sup>

atom is in a distorted square-pyramidal environment with a Cu–Cu separation of 3.381(4) Å. In another<sup>45</sup> each copper atom is roughly square-planar with a Cu–Cu separation of 3.490(1) Å (mean). In the remaining two species<sup>46</sup> the central coppers are *pseudo*-octahedrally coordinated and the outer two are penta-coordinate (square-pyramidal) with Cu–Cu separations of 3.741(2) and 3.754(2) Å.

The  $[Cu_3(\mu-metz)_6(H_2O)_4]^{6+}$  cation<sup>47</sup> consists of linear trimeric clusters positioned on the crystallographic three-fold axis, and the copper(II) atoms are bridged by triple N<sup>1</sup>,N<sup>2</sup>-coordinating triazole ligands. The terminal copper atoms are in addition coordinated by two water molecules, and thus have a distorted square-pyramidal geometry. The central copper atom is located at a three-fold inversion center and thus should exhibit dynamic Jahn–Teller behavior. The Cu–Cu separation is 3.719(7) Å.

In a green derivative<sup>48</sup> four guanosine-3'-monophosphate ligands act as three-atom bridges (O-P-O) between the three copper atoms. Each copper atom displays a square-pyramidal geometry.

There are six species<sup>49-52</sup> which contain "oxalate" type bridges between three copper(II) atoms. In one<sup>49</sup> the monoclinic unit cell contains a [CuN<sub>2</sub>-(C<sub>2</sub>)O<sub>2</sub>CuO<sub>2</sub>(C<sub>2</sub>)N<sub>2</sub>Cu] bridging network, and the copper(II) atoms are

square-pyramidal with a Cu–Cu separation of 5.159 Å. Two trimeric units are related through an inversion center to form a bis trimeric entity.

A pale blue derivative<sup>50</sup> consists of tricopper and tetracopper dications packed together in a 1:1 ratio and placed around inversion centers. The tricopper cation contains a central CuO<sub>4</sub> and two outer CuN<sub>4</sub> square units. In the  $[N_2CuN_2(C_2)O_2CuO_2(C_2)N_2CuN_2]$  unit the Cu-Cu separation is 5.190(1) Å. The tetracopper cation will be discussed in Section 3.

A trimeric cation<sup>51</sup> which consists of the  $[CuN_2(C_2)S_2CuS_2(C_2)N_2Cu]$ bridging network contains the central copper atom in a square-planar environment (CuS<sub>4</sub>) and the terminal copper atoms in CuO<sub>2</sub>N<sub>2</sub>S<sub>2</sub> structures with tetragonal-bipyramidal geometry. The mean Cu–Cu separation is 5.699(1)Å.

The remaining three species<sup>52</sup> contain a  $[CuO_2(C_2)ONCuNO(C_2)O_2Cu]$  bridging network. The central copper(II) atoms in two of the species are square-pyramidal and in the third one the central copper(II) atom is square-planar. The terminal copper(II) atoms in all three species are penta-coordinate with geometries that are intermediate between square-pyramidal and trigonal-bipyramidal (Table I).

There are four derivatives<sup>53-56</sup> in which three copper(II) atoms are singly bridged by  $\mu$ -oxygen ligands and another three species<sup>57-59</sup> in which a single halogen atom serves as a bridge (chloride, <sup>57,58</sup> or bromide<sup>59</sup>). In the deep blue trimer<sup>53</sup> [Cu<sub>3</sub>(dapo)<sub>2</sub>(dapoH)<sub>2</sub>]<sup>4+</sup> the cation contains a central four-coordinate copper(II) chelated to the two deprotonated ligands through the oxygen and one nitrogen of each ligand with a *cis* arrangement. Each of the deprotonated ligands is also coordinated to a terminal copper(II) through the oxygen (bridging) and the remaining nitrogen. The square-planar coordination of each terminal copper(II) is completed by two nitrogens of a neutral ligand.

In another deep blue derivative<sup>54</sup> the oxygen atoms of two tridentate 1,3-diamino-2-propanolato ligands act as bridging atoms between the copper(II) atoms; the nitrogen atoms of each of the ligands are coordinated to different copper(II) atoms. The two 1,3-diamino-2-propanol ligands are bidentate to Cu(II) through the nitrogens. Two thiocyanate groups complete the penta-coordination sphere of copper(II) atoms (Table I).

Similar coordination of 1,3-diamino-2-propanol ligands exists in a nitrite trimeric derivative.<sup>55</sup> The bridging oxygen atoms of eddta link the vertices of the coordination polyhedra into a trimeric system.<sup>56</sup> Each copper(II) atom is *pseudo*-octahedrally coordinated, with Cu-Cu separation of 3.840(1)Å and Cu-O-Cu bridge angles of  $121.5(2)^{\circ}$ .

The structure of a dark green derivative<sup>57</sup> consists of two  $Cu(dapdH_2)Cl^+$  cations singly bridged by two chlorides and the  $CuCl_4^{2-}$  anion, with

Cu-Cl-Cu bridge angles of 130.84(9)°. A structure of a red complex<sup>58</sup> contains a Cu<sub>3</sub>Cl<sup>8-</sup><sub>14</sub> anion, two unequally flattened CuCl<sup>2-</sup><sub>4</sub> tetrahedra, and {N(2amet)pipzH<sub>3</sub>}<sup>3+</sup>, cations which are hydrogen bonded to the anions. The structure of Cu<sub>3</sub>Cl<sup>8-</sup><sub>14</sub> is a linear array of three Cu atoms singly bridged with two chlorides with Cu-Cl-Cu bridge angles 179.38(2)° and Cu-Cu separation of 5.690(1) Å.

In a dark red derivative<sup>59</sup> iodine atoms serve as bridges between three copper(II) atoms  $[(qo)_2Cu-I-Cu(qo)_2-I-Cu(qo)_2]^{2-}$  with Cu-I-Cu bridge angles of 114.3(2)°.

The structure<sup>60</sup> of  $[Cu_3(ac)_4(H_2O)(bpy)_3]^{2+}$  is shown in Figure 2. In the trimeric unit the geometry around the copper(II) centers is square-pyramidal  $CuO_3N_2$ . The Cu(1), Cu(2) unit is bridged by three acetato ligands displaying different bridging modes. Atom Cu(3) is bonded to a unidentate and a bridging acetato ligand. The Cu(1)-Cu(2), Cu(1)-Cu(3) and Cu(2)-Cu(3) separations are 3.196(1), 6.277(1) and 4.568(1)Å, respectively. In a blue complex<sup>61</sup> the three moieties are held together by a  $\mu_3$ -carbonate group which lies on a crystallographically required six symmetry axis.



FIGURE 2 Structure of  $[Cu_3(ac)_4(H_2O)(bpy)_3]^{3+}$ .

Three hexa-coordinate copper(II) atoms with  $CuO_4N_2$  and two with  $CuO_3N_3$  structures are connected only by unique  $O \cdots H \cdots$  hydrogen bonds, with the distances 2.43(2) and 2.37(2) Å.<sup>62</sup>

In another trimeric species<sup>63</sup> each of three Cu(tmtac) moieties is bridged *via* two imidazolate anions to two remaining Cu(tmtac) moieties, yielding three distorted square-pyramidal CuN<sub>5</sub> polyhedra. The three copper(II) atoms are arranged at the corners of an equilateral triangle with a Cu–Cu separation of 5.92 Å.

There are six examples<sup>64-68</sup> of composition  $Cu_3(\mu-L)_2(hfac)_6$  where each of the three  $Cu(hfac)_2$  moieties is bridged by two bidentate ligands to two remaining  $Cu(hfac)_2$  moieties, yielding a *pseudo*-octahedrally coordinated central copper(II) atom and penta-coordinated (square-pyramidal) outer copper(II) atoms (Table I).

The structure of  $Cu_3(\mu$ -tepz)<sub>2</sub> $Cl_6^{69}$  is shown in Figure 3. The structure is unique in that it contains a trimeric arrangement of copper(II) centers in which the central Cu(1) bridges two ligands that encompass one copper each. The molecule has a center of symmetry at Cu(1) with the result that the three coppers are linear. The Cu(1)-Cu(2) separation is 7.360(2) Å.

In spite of the fact that trimeric copper(II) compounds are much less common than mono- or dimeric derivatives, they have a rich variety of structural types. As seen above, there are a variety of coordination geometries observed: square-planar, tetrahedral, square-pyramidal, trigonal-bipyramidal and tetragonal-bipyramidal, from which, by far, the most common are square-planar and square-pyramidal. The ligands involved are monothrough hexadentate and even octa- and nonadentate. The most common ligands are O and N donors. The multidentate ligands include both homoand hetero-donor atoms with O and N-donors by far the most common. Bidentate ligands include those with two O, two N, two S donor atoms, and those with O plus N-donor sites. Tridentate ligands include those with three O, three N, one O plus two N-donor sites. Tetradentate ligands include those with two O plus two N-donor sites. Pentadentate ligands involve those with three O plus two N-donor sites. Hexadentate ligands include those with four O plus two N, and two O plus four N-donor sites. Octadentate ligands include those with six O plus two N, two O plus two N plus four S-donor sites. Nonadentate ligand includes three O plus six N-donor sites.

Metal-ligand distances are generally shorter for terminal groups than equivalent bridging ones, and both increase as the coordination number increases and as the donor atom covalent radius increases.



FIGURE 3 Structure of Cu<sub>3</sub>(µ-tepz)<sub>2</sub>Cl<sub>6</sub>.<sup>69</sup>

The mean Cu-L bond distances (Å) as well as the mean intra-metallocyclic ring angles (°) for four-, five- and six-coordinate Cu(II) atoms in trimeric derivatives are summarized in Table IA.

There are examples, which contain with trimers in the same crystal hexameric,<sup>18</sup> polymeric,<sup>19,32</sup> tetrameric<sup>50</sup> or monomeric<sup>56,58</sup> units. Two crystallographically independent molecules, differing by degree of distortion, have been found to be present in one crystal in two cases.<sup>52,55</sup> The coexistence of two or more species, differing only by degree of distortion, is typical of the general class of distortion isomerism.<sup>70</sup>

|                                                                                                           | IABLE                        | I UTYSTAL                           | tographic an                                                                                                                          | d structural data lor           | unmeric copper(                                     | II) comp               | -spunc                                                        |                                                                                         |                                                |      |
|-----------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------|------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|------|
| Compound (colour)                                                                                         | Cryst. cl.<br>space gr.<br>Z | a (ỷ) 2<br>c (ỷ) 2                  | $egin{array}{c} lpha \left(  ight) \ eta \left(  ight) \ eta \left(  ight) \ \gamma \left(  ight) \ \gamma \left(  ight) \end{array}$ | Chromophore                     | $Cu-L(\dot{\mathbf{A}})$                            |                        | $Cu-Cu(\dot{A})$<br>$Cu-L-Cu(^{\circ})$                       | L-C                                                                                     | n-T (°)                                        | Ref. |
| $[Cu_3(\mu-bipyam)_4Br_2] \cdot H_2O$ (dark purple)                                                       | or<br>Pnn2<br>2              | 14.186(3)<br>13.040(3)<br>11.313(2) |                                                                                                                                       | CuN4 (×1)                       | N <sup>b</sup> 1.967(                               | (16,31)                | 2.468(1)                                                      | N,N <sup>b</sup> 89                                                                     | .2(2)                                          | 9    |
|                                                                                                           |                              | -                                   |                                                                                                                                       | CuN4Br (×2)                     | N 2.068(<br>Br 2.640(                               | (8,23)<br>1)           |                                                               | N,N 88<br>98                                                                            | .0(3)<br>.3(2.8)                               |      |
| [Cu <sub>3</sub> (μ-bipyam) <sub>4</sub> Cl <sub>2</sub> ] · H <sub>2</sub> O<br>(purple)                 | or<br>Pnn2<br>2              | 14.092(3)<br>12.895(3)<br>11.190(2) |                                                                                                                                       | CuN4 (×1)                       | N 1.965(                                            | 4,12)                  | 2.471(1)                                                      | N,N 90                                                                                  | (0)                                            | Q    |
|                                                                                                           |                              | ~                                   |                                                                                                                                       | CuN4Cl (×2)                     | N 2.061(<br>CI 2.465(                               | (4,11)                 |                                                               | N'N 88<br>N'N 88                                                                        | .5(1)<br>6(1.1.6)                              |      |
| $[Cu_3(\mu_3-OH)_2(C_{18}H_{42}N_6O_3]$                                                                   | yų<br>Xų                     | 12.519(5)                           |                                                                                                                                       | CuO4N2                          | μ <sub>3</sub> HO 2.019(                            | 15,31)                 | 2.808(3)                                                      | 0,0<br>13<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 | .1(4)                                          | ٢    |
| (c104)4.(1120 (alac)                                                                                      | r0 <sub>3</sub>              | 29.573(9)                           |                                                                                                                                       |                                 | )600:7 D                                            | (c,cl)<br>(12,14)      | not given                                                     | N'N<br>N'N                                                                              | 2.0(5,8)                                       |      |
| [Cu <sub>3</sub> (μ <sub>3</sub> -OH)(μ-ae) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>2</sub><br>(deep blue) | tr<br>P-1                    | 12.448(1)<br>12.698(1)              | 90.26(1)<br>113.36(1)                                                                                                                 | CuO <sub>3</sub> N <sub>2</sub> | μ <sub>3</sub> HO 2.012(<br>N 1.963(                | 3,16)<br>4.37)         | 3.1935(8,50)<br>105.1(1.4)                                    | 0,0<br>N,N 85                                                                           | .5(1,11.9)<br>4(2.5) <sup>6</sup>              | ×    |
| •                                                                                                         | 7                            | 11.765(1)                           | 80.66(1)                                                                                                                              |                                 | μacO 1.910(<br>2.400(                               | 3,6)<br>3,19)          |                                                               | 0,N<br>94<br>85                                                                         | $.0(1,4)^{d}$ .3(1,11.1)                       |      |
| $[Cu_3(\mu_3-OH)(\mu-at)_3](NO_3)_2$                                                                      | ь;                           | 11.918(2)                           | 98.04(2)                                                                                                                              | CuO <sub>3</sub> N <sub>2</sub> | $\mu_3$ HO 2.031(                                   | 5,15)                  | 3.206(1)                                                      | 0,0 82                                                                                  | .9(2,13.6)                                     | 6    |
| (emerald green)                                                                                           | 2                            | 14.4/8(2)<br>11.501(3)              | 99.80(1)                                                                                                                              |                                 | μatO 1.916(<br>2.404(<br>N 1.983(                   | 5,3)<br>6,68)<br>7,31) | Not given                                                     | N, O<br>N N, O<br>19, 29, 5                                                             | .6(3,4)°<br>.6(2,6) <sup>d</sup><br>.7(2,10.6) |      |
| [Cu <sub>3</sub> (μ <sub>3</sub> -OH)(μ-Cl)(μ-pz) <sub>3</sub> (py) <sub>2</sub> ·<br>Cl]py (green)       | or<br>Pnma<br>4              | 19.883(3)<br>15.063(3)<br>9.495(2)  |                                                                                                                                       | CuN2OCI (×1)                    | pzN 1.942(<br>μ <sub>3</sub> HO 1.976(<br>CI 2.257( | 440                    | 3.217(1,105)<br>μ <sub>3</sub> Ο 107.8(2,5.6)<br>μCl 70.93(5) | N N N N N N N N N N N N N N N N N N N                                                   | 0.6(3)<br>(6(1)<br>.6(1)<br>.0(1)              | 10   |
|                                                                                                           |                              |                                     |                                                                                                                                       | CuN <sub>3</sub> OCI (×2)       | pzN 1.962(<br>pyN 2.028(                            | 4,6)<br>4,0)           |                                                               | NN<br>NN<br>19<br>19                                                                    | (2)(2)<br>(2,9)<br>3.7(2)                      |      |

Aca - UD-al data for trin ţ d stri hic or o etalloc Ê TARIFI

|                                                                                                                                                                                       |                              |                                     |                                  |                                      | $\mu_3$ HO 2.000(3.0)<br>$\mu$ Cl 2.682(2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                           | N,O 88.2(2,1.9)<br>175.4(2)<br>N,CI 98.2(1,1)                                                                |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----|
| [Cu <sub>3</sub> (μ <sub>3</sub> -OH)(μ-pyco) <sub>3</sub> (μ <sub>3</sub> -SO <sub>4</sub> )].<br>16.3H <sub>2</sub> O (light green)                                                 | trg<br>P-3<br>2              | 18.05(1)<br>7.25(1)                 |                                  | CuO <sub>3</sub> N <sub>2</sub>      | O 1.987(5)<br>N 1.975(2,6)<br>O <sub>3</sub> SO 2.159(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.220(3)<br>108.2(4)                                                                      | 0,CL /8.1(1)<br>0,O 92.3(5,6.7)<br>N,N 82.7(5) <sup>6</sup><br>0,N 96.9(5,2.2)                               | 11 |
| [Cu <sub>3</sub> (μ <sub>3</sub> -OH)(μ-pibo) <sub>3</sub> ·<br>(μ-O <sub>2</sub> ClO <sub>2</sub> )](ClO <sub>4</sub> ) (green black)                                                | m<br>P2 <sub>1</sub> /n<br>4 | 15.630(8)<br>14.354(3)<br>17.255(4) | 93.39(5)                         | $CuO_2N_2(\times 1)$                 | $\begin{array}{c} \mu_{25} \mu_{25} \mu_{12} \mu_$ | Not given<br>μ <sub>3</sub> HO 108.8(3,1.7)                                               | (2.c,c)(2.001<br>0,0 92.7(2)<br>N,N 79.7(3) <sup>6</sup><br>0,N 93.8(3,4.1)<br>140.1(2)                      | 12 |
|                                                                                                                                                                                       |                              |                                     |                                  | CuO <sub>3</sub> N <sub>2</sub> (×2) | O 1.920(6,9)<br>N 1.976(6,23)<br>$\mu_3$ HO 1.974(6,5)<br>$\mu_4$ O,CIO 2.490(16,62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           | 0,0 95.5(4,14.4)<br>N,N 80.2(3,3) <sup>c</sup><br>0,N 92.3(5,15.0)<br>171.7(4,7.2)                           |    |
| [Cu <sub>3</sub> (µ <sub>3</sub> -OH)(µ-bibo) <sub>3</sub> (µ <sub>3</sub> -CIO <sub>4</sub> ) <sub>2</sub> ·<br>(H <sub>2</sub> O)] (green black)                                    | m<br>P2 <sub>1</sub> /c<br>4 | 15.350(1)<br>12.508(1)<br>21.439(2) | 96.81(1)                         | CuO <sub>3</sub> N <sub>2</sub> (×1) | $\begin{array}{c} 0 & 1.933(6) \\ N & 1.965(7,4) \\ \mu_3 HO & 1.963(6) \\ \mu O_3 CIO & 2.489(7) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.245(2)<br>111.1(3,1.3)                                                                  | 0,0 93.2(2,7.8)<br>N,N 81.0(3) <sup>e</sup><br>0,N 92.3(3,5.9)<br>172.2(3,6.9)                               | 13 |
|                                                                                                                                                                                       |                              |                                     |                                  | CuO4N <sub>2</sub> (×2)              | O 1.936(6,3)<br>N 1.970(8,6)<br>$\mu_3$ HO 1.970(5,2)<br>$\mu_0$ -CIO 2 575(8 198)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           | 0,0 88.7(3,6.7)<br>N,N 80.9(3,3) <sup>c</sup><br>0,N 91.4(3,7.5)<br>177 //36.6)                              |    |
| [Cu <sub>3</sub> ( $\mu_3$ -OH) <sub>0.5</sub> ( $\mu$ -pambo) <sub>3</sub> ·<br>(H <sub>2</sub> O) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>3/2</sub> · 4H <sub>2</sub> O (dark green) | trg<br>R-3<br>6              | 14.44(1)<br>35.05(4)                |                                  | CuO <sub>3</sub> N <sub>2</sub>      | (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (1.10) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.246(3)<br>110.9(4)                                                                      | 0,0 89.4(3,5.7)<br>N,N 79.8(3) <sup>6</sup><br>O,N 95.0(3,6.8)                                               | 14 |
| [Cu <sub>3</sub> (µ <sub>3</sub> -OH)(µ-amo) <sub>3</sub> ](CIO <sub>4</sub> ) <sub>2</sub><br>(emerald green)                                                                        | tr<br>P-1<br>2               | 11.720(1)<br>12.283(2)<br>14.252(2) | 71.78(1)<br>81.07(1)<br>65.69(1) | CuO <sub>3</sub> N <sub>2</sub>      | $\begin{array}{ccc} & 1.983(6,28)\\ & 1.917(5,2)\\ & \mu O & 1.917(5,2)\\ & 2.375(4,39)\\ & \mu_3 HO & 2.045(5,2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 3.283(-,34)\\ \mu_3 O \ 106.7(2,1.6)\\ \mu O \ 60.0(-,1.0) \end{array}$ | 0,0 82.3(2,15.0)<br>N,N 97.6(2,4) <sup>d</sup><br>0,N 94.2(2,6) <sup>d</sup><br>96.5(2,17.8)<br>168.6(2,3.9) | 15 |

| (                                                                                                                                                                          |                              |                                     |                                                                                                                            |                                      |                                                                                                        |                                         |                                                                                              |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|------|
| Compound (colour)                                                                                                                                                          | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)             | $egin{array}{c} lpha \left(  ight) \ eta \left(  ight) \ eta \left(  ight) \ \gamma \left(  ight) \end{array} \end{array}$ | Chromophore                          | Си-L (Å)                                                                                               | $Cu-Cu(\dot{A})$<br>$Cu-L-Cu(^{\circ})$ | L-Cu-L <sup>(°)</sup>                                                                        | Ref. |
| [Cu <sub>3</sub> (μ <sub>3</sub> -OH)(pz) <sub>3</sub> (pzH) <sub>2</sub> (NO <sub>3</sub> ) <sub>2</sub> ].<br>H <sub>2</sub> O (deep blue)                               | E<br>7<br>2                  | 7.756(2)<br>17.639(3)<br>8.883(1)   | 91.18(1)                                                                                                                   | CuO4N2 (× 1)                         | pzN 1.943(3,17)<br>O <sub>2</sub> NO 2.042(3)<br>2.683(4,187)<br>μ <sub>3</sub> HO 1.969(3)            | 3.351(1,27)<br>114.5(1,2.5)             | O,O 75.0(1,14.9)<br>N,N 92.2(1,1.5)<br>N,N 82.2(1,1.5)<br>O,N 89.4(1,9.3)<br>0,N 89.4(1,9.3) | 16   |
|                                                                                                                                                                            |                              |                                     |                                                                                                                            | CuN <sub>3</sub> O <sub>2</sub> (×2) | pzN 1.946(3,29)<br>pzHN 2.007(4,14)<br>O <sub>2</sub> NO 2.547(4,135)<br>μ <sub>4</sub> HO 2.006(3,16) |                                         | 0,0 49.0(1)<br>N,N 174.7(1)<br>0,N 88.5(1,3.1)                                               |      |
| [CU <sub>3</sub> (µ-OH) <sub>2</sub> (µ-C <sub>18</sub> H <sub>42</sub> N <sub>4</sub> O <sub>2</sub> ) <sub>2</sub> ] ·<br>(CIO <sub>4</sub> ) <sub>2</sub> (violet blue) | т<br>Р2 <sub>1</sub> /с<br>2 | 7.759(6)<br>13.21(1)<br>15.00(1)    | 103.95(6)                                                                                                                  | CuO4 (×1)                            | μHO 1.922(7)<br>μΟ 1.904(7)                                                                            | 2.902(1)<br>98.9(3,3)                   | 0,0 79.0(3)                                                                                  | 17   |
|                                                                                                                                                                            |                              |                                     |                                                                                                                            | CuO <sub>3</sub> N <sub>2</sub> (×2) | N 2.018(9,41)<br>O 1.910(7)<br>µdO 1.904(7)<br>O,CIO 2.63(1)                                           |                                         | 0,0 79.3(3)<br>N,N 85.2(3) <sup>6</sup><br>0,N 97.4(3,2.4)                                   |      |
| $[Cu_{\delta}(\mu-ap)_{\delta}(dmf)]_{2} \cdot [Cu_{\delta}(\mu-1)_{\delta}(I)_{2}] (blue)$                                                                                | цг<br>Р-]<br>1               | 10.294(2)<br>11.342(2)<br>15.612(3) | 77.89(2)<br>76.60(2)<br>82.22(2)                                                                                           | CuO <sub>4</sub> (×1)                | 0 1.914(7,7)                                                                                           | 2.930(1,16)<br>99.3(3,1.2)              | O,O 79.2(3,1)<br>104.9(3,3.8)<br>157.7(3,4.1)                                                | 18   |
|                                                                                                                                                                            |                              |                                     |                                                                                                                            | $CuO_2N_2(\times I)$                 | μΟ 1.921(6,9)<br>N 2.005(8,6)                                                                          |                                         | 0,0 78.3(3)<br>N,N 92.1(3)<br>0,N 94.9(3,1.2) <sup>d</sup><br>168.2(3,6.1)                   |      |
|                                                                                                                                                                            |                              |                                     |                                                                                                                            | CuO <sub>3</sub> N <sub>2</sub> (×1) | μO 1.925(7,8)<br>N 2.002(8,2)<br>dmfO 2.601(7)                                                         |                                         | 0,0 78.6(3)<br>92.3(3,3.0)<br>N,N 90.6(3)<br>0,N 95.7(3,20) <sup>d</sup>                     |      |
|                                                                                                                                                                            |                              |                                     |                                                                                                                            | Cul <sub>3/4</sub>                   | see Table VI                                                                                           |                                         | 170.8(3,2.4)                                                                                 |      |

TABLE I (Continued)

| $[Cu_3(\mu-ap)_4][Cu_3^II_5]$<br>(dark green)                                                                                                | c2/c<br>s                    | 14.350(4)<br>16.046(2)<br>13.183(3) | 101.30(2)                      | CuO4 (×1)                                                     | 0 <sup>4</sup> | 1.903(7,4)                                           | Not given<br>99.3(3,0)   | 0,0 79.3(3)<br>103.1(4)                                                                                    | 19 |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|--------------------------------|---------------------------------------------------------------|----------------|------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                              | 0                            | (с)сог.ст                           |                                | CuO4N <sub>2</sub> (x2)                                       | qz             | 1.930(7,3)<br>1.995(10,5)                            |                          | (4)<br>0,0 77.9(3)<br>N,N 94.2(4)<br>0,N 94.0(4,1.3) <sup>d</sup>                                          |    |
| Cu <sub>3</sub> (µ-pp) <sub>6</sub> (not given)                                                                                              | tr<br>P-1<br>3               | 10.667(4)<br>10.553(4)<br>9.964(4)  | 105.2(2)<br>97.8(2)<br>87.9(2) | CuO4N2 (×1)                                                   | ZQ             | 2.038(5)<br>1.916(4)<br>2.826(5)                     | Not given                | (c.c.c)c.voi<br>0,0 79.4(2)<br>100.6(2)<br>0,N 94.5(2,6.1)                                                 | 20 |
|                                                                                                                                              |                              |                                     |                                | CuO <sub>3</sub> N <sub>2</sub> (×2)                          | zog            | 2.043(5,4)<br>1.894(4)<br>1.912(4)                   |                          | 0,0 87.3(2,3.0)<br>N,N 91.3(2)<br>0,N 93.4(2,3.2)                                                          |    |
| [Cu <sub>3</sub> (µ-C <sub>12</sub> H <sub>24</sub> N <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> ](PF <sub>6</sub> ) <sub>2</sub><br>(green) | m<br>P2 <sub>1</sub> /c<br>2 | 7.112(2)<br>18.507(5)<br>14.106(4)  | 101.44(3)                      | CuO <sub>4</sub> (×1)<br>CuO <sub>4</sub> N <sub>2</sub> (×2) | og o z         | 2.049(5)<br>1.910(5,8)<br>2.563(5,119)<br>2.094(5,8) | Not given                | 0,0 77.6(2)<br>0,0 77.6(2)<br>0,0 77.6(2)                                                                  | 21 |
| [Cu <sub>3</sub> (µ-amat) <sub>2</sub> ](ClO <sub>4</sub> ) <sub>2</sub><br>(kakki) (at 138(1)K)                                             | m<br>P2 <sub>1</sub> /c      | 15.945(4)<br>17.860(5)<br>14.101(5) | 104.84(2)                      | CuO4 (×1)                                                     | 01             | 1.911(5,7)<br>1.912(4,4)                             | 2.938(1,3)<br>109.9(2,7) | N,N 116.8(2)<br>0,0 79.1(2)<br>110.0(2)                                                                    | 22 |
|                                                                                                                                              | Ŧ                            | (c)161.41                           |                                | $CuO_2N_2(\times 2)$                                          | z oʻ           | 1.980(4,7)<br>1.898(4,7)                             |                          | 0,0 79.5(2,2)<br>0,0 79.5(2,2)<br>N,N 87.5(2,3) <sup>c</sup><br>0,N 97.4(2,7) <sup>d</sup><br>169.1(2,2.2) |    |

•

| TABLE I (Continued)                                       |                              |                                     |                                                                     |                                      |                                    |                                     |                                  |                                                                                              |      |
|-----------------------------------------------------------|------------------------------|-------------------------------------|---------------------------------------------------------------------|--------------------------------------|------------------------------------|-------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------|------|
| Compound (colour)                                         | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)             | $\begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \gamma \end{pmatrix}$ | Chromophore                          | Cr                                 | - <i>L</i> (Å)                      | $\frac{Cu-Cu}{Cu-L-Cu}(\dot{A})$ | $L-Cu-L(^{\circ})$                                                                           | Ref. |
| $[Cu_3(\mu-\epsilon ha)_2(H_2O)](ClO_4)_2$<br>(not given) | or<br>Pbca<br>8              | 26.884(4)<br>19.093(4)<br>15.740(2) |                                                                     | CuO <sub>5</sub> (×1)                | 0 <sup>τ</sup><br>Η <sub>2</sub> Ο | 1.98(1,8)<br>2.18(2)                | 2.963(5,13)<br>100.1(7,2.5)      | O,O 76.7(6,1)<br>96.6(7,8.2)<br>120.0(7,6.2)                                                 | 23   |
|                                                           |                              |                                     |                                                                     | CuO <sub>2</sub> N <sub>2</sub> (×2) | О <sup>Ħ</sup>                     | 1.89(11)<br>1.91(22)                |                                  | $0,0 \ 81.5(2,1.3)$<br>0,0 $81.5(2,1.3)$<br>N,N $89.7(8,2)^{\circ}$<br>0,N $94.3(7,1.6)^{d}$ |      |
| $Cu_3(\mu-ap)_4(\mu-O_2NO)(NO_3)$<br>(dark blue)          | с2/с<br>°                    | 20.828(8)<br>13.064(2)              | 119.87(2)                                                           | CuO <sub>5</sub> (×1)                | μ0200                              | 1.936(3,26)<br>2.480(4)             | 2.981(1,29)<br>100.8(2,3.1)      | (0.0, 0.78, 2(1, 19.0))                                                                      | 24   |
|                                                           | ¢                            | (0)/00.41                           |                                                                     | $CuO_3N_2(\times 1)$                 | μ0<br>02N0                         | 1.926(3,11)<br>2.538(3)             |                                  | 0,0 77.5(1)<br>95.7(1,6.7)<br>N,N 91.7(2)                                                    |      |
|                                                           |                              |                                     |                                                                     | CuO4N2 (×1)                          | 0η<br>00200<br>00200               | 1.939(3,13)<br>2.703(4)<br>2.691(4) |                                  | 0,N 95.6(1,3) <sup>2</sup><br>170.3(2,2,4)<br>0,O 79.7(1)<br>87.9(1,1.4)<br>N,N 89.3(1)      |      |
|                                                           |                              |                                     |                                                                     |                                      | Z                                  | 1.998(4,3)                          |                                  | O,N 95.5(1,4) <sup>d</sup><br>91.9(1,3.7)<br>174 5(1.2)                                      |      |
| $Cu_{3}(\mu-C_{11}H_{19}N_{2}O_{2})_{2}$ (green)          | цг<br>Р-1                    | 7.564(2)<br>9.547(8)<br>9.575(8)    | 111.83(10)<br>96.32(8)<br>100.25(9)                                 | CuO <sub>4</sub> (×1)                | Oπ                                 | 1.92(2,1)                           | 3.017(1)<br>102.4(6,3)           | Not given                                                                                    | 25   |
|                                                           |                              |                                     |                                                                     | CuO <sub>2</sub> N <sub>2</sub> (×2) | Q Z                                | 1.96(2,0)<br>1.93(2,1)              |                                  | Not given                                                                                    |      |

| [Cu <sub>3</sub> ( <i>μ</i> -es) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ](ClO <sub>4</sub> ) <sub>2</sub> · H <sub>2</sub> O<br>(not given) | m<br>P2 <sub>1</sub> /n<br>4 | 15.488(2)<br>21.883(4)<br>10.884(1) | 94.28(1)  | CuO <sub>6</sub> (×1)    | μO 2.037(6,14)<br>2.326(6,2)<br>H <sub>2</sub> O 1.975(6,25) | 3.023(2,30)<br>95.2(2,5.6) | 0,0 72.0(2,1)<br>93.7(2,8.0)<br>169.3(2,1.4) | 23 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-----------|--------------------------|--------------------------------------------------------------|----------------------------|----------------------------------------------|----|
|                                                                                                                                                   |                              | ~                                   |           | $CuO_2N_2$ (×2)          | $\mu 0$ 1.910(5,15)<br>N 1.909(7,15)                         |                            | O,O 84.8(2,5)<br>N,N 85.6(3,2) <sup>c</sup>  |    |
|                                                                                                                                                   |                              |                                     |           |                          | × •                                                          |                            | O,N 94.8(3,8) <sup>d</sup><br>176.6(3.4.2)   |    |
| $[Cu_3(\mu - C_{20}H_{24}N_2O)_2(H_2O)]$                                                                                                          | tg                           | 16.12(1)                            |           | $CuO_5(\times 1)$        | $\mu 0$ 1.84(2)                                              | 3.09(1)                    | 0,0 74(1)                                    | 26 |
| (ClO <sub>4</sub> ) <sub>2</sub> · 2H <sub>2</sub> O (red brown)                                                                                  | $P4_2bc$                     |                                     |           |                          | 2.08(2)                                                      | 105(1,1)                   | 107(1,18)                                    |    |
|                                                                                                                                                   | 4                            | 18.48(1)                            |           |                          | H <sub>2</sub> O 2.52(1)                                     |                            | 178(2)                                       |    |
|                                                                                                                                                   |                              |                                     |           | $CuO_3N_2$ (×2)          | $\mu O 1.94(3,2)$                                            |                            | 0,0 76(1)                                    |    |
|                                                                                                                                                   |                              |                                     |           |                          | O 2.29(3)                                                    |                            | 107(1,3)                                     |    |
|                                                                                                                                                   |                              |                                     |           |                          | N 2.04(4,7)                                                  |                            | N,N 88(1) <sup>d</sup>                       |    |
|                                                                                                                                                   |                              |                                     |           |                          |                                                              |                            | O,N 80(1,1) <sup>c</sup>                     |    |
|                                                                                                                                                   |                              |                                     |           |                          |                                                              |                            | 97(1) <sup>d</sup>                           |    |
|                                                                                                                                                   |                              |                                     |           |                          |                                                              |                            | 172(1,1)                                     |    |
| $[Cu_{3}(\mu-CH_{2}(PO_{3})CH_{2}COO\}_{2}]$                                                                                                      | m                            | 5.022(5)                            |           | $CuO_{6}(\times 1)$      | 0 1.915(2)                                                   | 3.372(1)                   | 0,0 67.2(1)                                  | 27 |
| $(H_2O)_2$ ] 6H <sub>2</sub> O (green)                                                                                                            | $P2_1/c$                     | 12.340(5)                           | 109.7(1)  |                          | μΟ 1.995(3)                                                  | 104.2(1)                   | 90.0(1, 5.6)                                 |    |
|                                                                                                                                                   | 7                            | 16.390(8)                           |           |                          | 2.948(3)                                                     |                            | 112.8(2)                                     |    |
|                                                                                                                                                   |                              |                                     |           | $CuO_{5}(\times 2)$      | 0 1.927(3,7)                                                 |                            | 0,0 85.5(2,1.0)                              |    |
|                                                                                                                                                   |                              |                                     |           |                          | $\mu O 2.010(2)$                                             |                            | 94.6(2,10.6)                                 |    |
|                                                                                                                                                   |                              |                                     |           |                          | 2.219(3)                                                     |                            |                                              |    |
|                                                                                                                                                   |                              |                                     |           |                          | H <sub>2</sub> O 1.997(3)                                    |                            |                                              |    |
| $[Cu_{3}(\mu-Cl)_{4}(H_{2}O)_{2}Cl_{4}](tmso)_{2}$                                                                                                | ш                            | 23.978(10)                          |           | CuCl <sub>4</sub> (×1)   | $\mu$ CI 2.278(4,18)                                         | 3.331(4)                   | CI,CI 90.0(2,3.1)                            | 28 |
| (golden yellow)                                                                                                                                   | C2/c                         | 10.142(5)                           | 127.00(2) |                          |                                                              | 93.3(2,5)                  |                                              |    |
|                                                                                                                                                   | 4                            | (01)0CE.81                          |           |                          |                                                              |                            |                                              |    |
|                                                                                                                                                   |                              |                                     |           | CuCl <sub>3</sub> O (×2) | CI 2.239(4)                                                  |                            | CI,CI 89.6(2,3.1)<br>CI,O 90.3(3,9)          |    |
|                                                                                                                                                   |                              |                                     |           |                          |                                                              |                            |                                              |    |

| TABLE I (Continued)                                                              |                              |                                     |                                                                                                                       |                        |                                        |                          |                                     |      |
|----------------------------------------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|--------------------------|-------------------------------------|------|
| Compound (colour)                                                                | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)             | $egin{array}{c} lpha \left( ^{\circ}  ight) \ eta \left( ^{\circ}  ight) \ \gamma \left( ^{\circ}  ight) \end{array}$ | Chromophore            | $Cu-L(\dot{A})$                        | Cu-Cu (Å)<br>Cu-L-Cu (°) | <i>L</i> - <i>Cu</i> - <i>L</i> (°) | Ref. |
| [Cu <sub>3</sub> (µ-Cl) <sub>4</sub> Cl <sub>3</sub> (EtOH)](nmpH)<br>(red)      | m<br>P2 <sub>1</sub> /n<br>4 | 11.843(4)<br>7.626(3)<br>23.840(12) | 79.61(3)                                                                                                              | CuCl <sub>4</sub> (×1) | μCl 2.273(3,19)                        | 3.366<br>94.0(1,1.2)     | Cl,Cl 90.0(1,4.6)<br>177.8(1,5)     | 29   |
|                                                                                  |                              |                                     |                                                                                                                       | $CuCl_4(\times 1)$     | $\mu$ Cl 2.349(3,30)<br>Cl 2.274(3,19) |                          | Cl,Cl 90.0(1,6.1)<br>170.0(1,4.1)   |      |
|                                                                                  |                              |                                     |                                                                                                                       |                        | (1, c, c) 0, c (1)                     |                          | (1,4,1)<br>(1,4,1)                  |      |
|                                                                                  |                              |                                     |                                                                                                                       |                        | CI 2.246(3)                            |                          | 171.6(1)                            |      |
|                                                                                  |                              |                                     |                                                                                                                       |                        |                                        |                          | 169.1(3)                            |      |
| $Cu_3(\mu$ -Cl)_4Cl_2(dmf)_2<br>(not given)                                      | m<br>P2 <sub>1</sub> /n      | 19.190(6)<br>6.084(4)               |                                                                                                                       | CuCl <sub>4</sub> (×1) | $\mu$ Cl 2.275(2,8)                    | 3.370<br>94.5(2,2)       | C1,C1 90.0(2,3.5)                   | 30   |
|                                                                                  | ţ                            | (1)(1)                              |                                                                                                                       | ()'(CI-O (×3)          | "CI 2317(22)                           |                          | CICI 87 5(7) 7 9)                   |      |
|                                                                                  |                              |                                     |                                                                                                                       |                        | CI 2.248(2)                            |                          | CI,O 92.3(2,4.6)                    |      |
|                                                                                  |                              |                                     |                                                                                                                       |                        | 0 1.950(6)                             |                          | -                                   |      |
| $[Cu_3(\mu-ade)_2(\mu-Cl)_4Cl_4]$                                                | B                            | 11.134(4)                           |                                                                                                                       | $CuCl_4N_2$ (×1)       | N 2.027(5)                             | 3.377(3,103)             | CI,CI 91.7(1)                       | 31   |
| $4H_2O$ (green)                                                                  | P21/c                        | 12.726(2)<br>10.404(3)              | 119.49(3)                                                                                                             |                        | $\mu$ Cl 2.313(3)<br>2.768(3)          | Not given                | Cl,N 88.8(2,1.5)                    |      |
|                                                                                  |                              |                                     |                                                                                                                       | $CuCl_4N(\times 2)$    | N 2.028(7)                             |                          | CI,CI 94.0(1,8.1)                   |      |
|                                                                                  |                              |                                     |                                                                                                                       |                        | (1 2.282(3,10))                        |                          | [103.4(1)                           |      |
|                                                                                  |                              |                                     |                                                                                                                       |                        | $\mu$ Cl 2.324(3)<br>2.743(3)          |                          | CI,N 87.4(2,2.7)<br>177.0(2)        |      |
| [Cu <sub>3</sub> (µ-Cl) <sub>4</sub> Cl <sub>4</sub> ](3-mapH)<br>(orange brown) | m<br>C2/c                    | 26.05(1)<br>13.687(4)               | 117.95(3)                                                                                                             | CuCl₄ (×1)             | $\mu$ Cl 2.261(6,37)<br>2.411(5)       | 3.382<br>93.6(2,2.5)     | Cl,Cl 90.0(2,5.4)<br>171.2(2,4.2)   | 29   |
|                                                                                  |                              | (c)een:                             |                                                                                                                       | CuCl <sub>4</sub> (×2) | $\mu$ Cl 2.326(5)<br>Cl 2.251(6)       |                          | Cl,Cl 90.0(3,4.2)<br>177.4(2,0)     |      |

| [Cu <sub>3</sub> (μ-Cl) <sub>4</sub> Cl <sub>4</sub> ](nmpzH)                                                  | æ                       | 6.840(3)                             |           | CuCl4 (×1)             | $\mu$ Cl 2.245(3,10)                   | 3.456                      | CI,CI 90.0(1,3.6)                 | 29 |
|----------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|-----------|------------------------|----------------------------------------|----------------------------|-----------------------------------|----|
| (orange)                                                                                                       | P2 <sub>1</sub> /n<br>4 | 14.321(9)<br>9.890(5)                | 102.90(5) |                        |                                        | 94.2(1,8)                  | 178.2(1,2)                        |    |
|                                                                                                                |                         |                                      |           | CuCl4 (×2)             | $\mu$ Cl 2.322(3,11)<br>Cl 2.223(3,13) |                            | Cl,Cl 90.0(1,6.3)<br>168.2(1,5.1) |    |
| (Et <sub>2</sub> NH <sub>2</sub> )Σ[Cu <sub>3</sub> (μ-Br)₄Br₄] ·<br>[CuBr <sub>2</sub> ] · EtOH (deep purple) | ₽ C2/m                  | 25.043(8)<br>6.4691(14)<br>19.009(5) | 102.84(2) | CuBr <sub>4</sub> (×1) | μ <b>Br</b> 2.407(6,13)                | 3.582(6,13)<br>94.4(2,1.3) | Br,Br 90.0(2,4.1)<br>179.8(1,1)   | 32 |
|                                                                                                                |                         | ,                                    |           | CuBr4 (×2)             | $\mu$ Br 2.476(6,25)<br>Br 2.380(6,15) |                            | Br,Br 90.0(2,5.7)<br>175.8(2,1.1) |    |
|                                                                                                                |                         |                                      |           | CuBr4 (polymer)        | $\mu$ Br 2.410(5,17)                   | 3.235(10,21)<br>84.3(2,1)  | Br,Br 95.5(2,2)<br>116.8(2,3,2)   |    |
| Cu <sub>3</sub> (µ-Cl)₄Cl(Et <sub>2</sub> na) <sub>6</sub>                                                     | E                       | 16.618(1)                            |           | $CuCl_4N_2(\times 1)$  | μCI 2.302                              | 3.686                      | CI,CI 87.8                        | 33 |
| (pale blue)                                                                                                    | P2 <sub>1</sub> /c<br>2 | 8.253(2)<br>28.194(1)                | 117.3(4)  |                        | 2.982<br>N 2.021                       | 89.8(-,2.4)                | Cl,N 89.7(-,1.1)                  |    |
|                                                                                                                |                         | ~                                    |           | $CuCl_3N_2$ (×2)       | CI 2.264(2)                            |                            | CI,CI 95.2(1,2.7)                 |    |
|                                                                                                                |                         |                                      |           |                        | $\mu$ Cl 2.304(1)                      |                            | N,N 174.0(2)                      |    |
|                                                                                                                |                         |                                      |           |                        | 2.790(1)                               |                            | Cl,N 90.8(2,3.9)                  |    |
|                                                                                                                |                         |                                      |           |                        | N 2.016(4,12)                          |                            |                                   |    |
| (Me <sub>3</sub> pzH)[Cu <sub>3</sub> ( <i>µ</i> -Cl)₄Cl₄]                                                     | E                       | 7.227(1)                             |           | CuCl <sub>4</sub> (×1) | μCI 2.269(1,6)                         | Not given                  | Cl,Cl 90.0(1,4.0)                 | 34 |
| (red orange)                                                                                                   | P2 <sub>1</sub> /n<br>4 | 19.356(3)                            | 98.29(1)  |                        |                                        | 94.4(1,3)                  | 177.2(1,6)                        |    |
|                                                                                                                | •                       |                                      |           | CuCl4 (×2)             | Cl 2.240(1,30)                         |                            | CI,CI 90.0(1,6.8)                 |    |
|                                                                                                                |                         |                                      |           |                        | $\mu$ Cl 2.356(1,21)                   |                            | 167.9(1,8.0)                      |    |
| (4-MepyH) <sub>2</sub> [Cu <sub>3</sub> (μ-Cl) <sub>4</sub> Cl <sub>4</sub> ]                                  | E                       | 24.578(5)                            |           | CuCl <sub>4</sub> (×1) | $\mu$ Cl 2.063(1)                      | Not given                  | Cl,Cl 90.0(1,5.4)                 | 34 |
| (red orange)                                                                                                   | C2/c                    | 12.278(2)                            | 95.01(1)  |                        | 2.272(1,14)                            | 94.1(1,6)                  | 179.0(1)                          |    |
|                                                                                                                | 4                       | (1)001.1                             |           | CuCl <sub>4</sub> (×2) | CI 2.248(1,17)                         |                            | CI,CI 90.0(1,5.8)                 |    |
|                                                                                                                |                         |                                      |           |                        | μCI 2.339(1,12)                        |                            | 171.2(1,4.4)                      |    |

| TADLE I (COMMEND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                     |                                                                                                                       |                        |                                                 |                                         |                                                             |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|------|
| Compound (colour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)             | $egin{array}{c} lpha \left( ^{\circ}  ight) \ eta \left( ^{\circ}  ight) \ \gamma \left( ^{\circ}  ight) \end{array}$ | Chromophore            | <i>Си–L</i> (Å)                                 | $Cu-Cu(\dot{A})$<br>$Cu-L-Cu(^{\circ})$ | L-Cu-L (°)                                                  | Ref. |
| $(4-MepyH)_2[Cu_3(\mu-Br)_4Br_4]^c$<br>(red orange)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m<br>C2/c<br>8               | 28.207(5)<br>12.779(2)<br>14.735(2) | 116.71(1)                                                                                                             | CuBr <sub>4</sub> (×1) | μ <b>B</b> r 2.415(3,8)                         | Not given<br>93.3(1,1)                  | Br,Br 90.0(1,3.0)<br>179.5(1)                               | 34   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                            |                                     |                                                                                                                       | CuBr <sub>4</sub> (×2) | Br 2.348(3,13)<br>μBr 2.464(3,5)                |                                         | Br,Br 90.0(1,4.7)<br>170.7(1,5.1)                           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                     |                                                                                                                       | CuBr <sub>4</sub> (×1) | μ <b>Br</b> 2.402(3,21)                         | Not given<br>93.8(1.1)                  | Br,Br 90.0(1,2.3)                                           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                     |                                                                                                                       | $CuBr_4 (\times 2)$    | Br 2.383(3,5)<br>uBr 2.483(3.19)                |                                         | Br,Br 90.0(1,5.6)<br>171 8(1 7)                             |      |
| [Cu <sub>3</sub> (µ-Br) <sub>4</sub> Br <sub>4</sub> (5B6map)<br>(dark purple)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m<br>P2 <sub>1</sub> /n      | 13.216(3)<br>4.076(1)               | 91.65(2)                                                                                                              | CuBr <sub>4</sub> (×1) | $\mu Br 2.391(5,3)$<br>2.464(5,16)              | Not given<br>94.3(1,9)                  | Br,Br 90.0(1,3.1)<br>180                                    | 29   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N                            | 24.014(0)                           |                                                                                                                       | $CuBr_4 (\times 2)$    | $\mu$ Br 2.389(3)<br>Br 7.475(3)                |                                         | Br,Br 90.0(2,5.5)                                           |      |
| $Cu_3(\mu$ -deae) <sub>2</sub> ( $\mu$ -Fac) <sub>2</sub> (Fac) <sub>2</sub> · (FtOH) <sub>-</sub> ( $hOH$ ) {-} | tr<br>P.1                    | 7.963(6)<br>8.443(7)                | 76.16(5)<br>81 82(5)                                                                                                  | CuO <sub>6</sub> (×1)  | μdetO 1.946(3)<br>2 575(5)                      | 3.126(1)                                | 0,0 89.2(2,3.0)                                             | 35   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                            | 13.553(6)                           | 87.62(6)                                                                                                              | CuO4N (×2)             | FacO 1.954(4)<br>$\mu$ O 1.903(4)               |                                         | Q,O 89.9(2,5)                                               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                     |                                                                                                                       |                        | N 2.030(4)<br>EtHO 2.623(5)<br>FacO 1.946(5,21) |                                         | 1/8./(2)<br>O,N 86.9(1) <sup>c</sup><br>93.7(2)<br>161.1(1) |      |
| Cu <sub>3</sub> (μ-ac)₄(msp)₂<br>(green)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tr<br>P-1                    | 10.865(3)<br>10.852(3)<br>7 768(3)  | 88.03(2)<br>95.86(2)<br>97.49(7)                                                                                      | CuO <sub>6</sub> (×1)  | acO 1.943(6)<br>$\mu$ O 2.533(7)<br>2.000(5)    | 3.319(1)<br>96.8(2,1.5)                 | 0.0 74.2(2)<br>91.8(2,2.5)                                  | 36   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                            | (-)00                               | (=)/                                                                                                                  | $CuO_3N_2$ (×2)        | acO 2.076(6)                                    |                                         | O,O 79.3(2)                                                 |      |

TABLE I (Continued)

|                                                                   |               | 37                                                                                                                |                              |                                           | 38                                                                 |               |                         |                  |                          |                     | 39                                 |                            |               |                    |           |                          |             | :        | 9               |                |                                     |                                  |                  |
|-------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|--------------------------------------------------------------------|---------------|-------------------------|------------------|--------------------------|---------------------|------------------------------------|----------------------------|---------------|--------------------|-----------|--------------------------|-------------|----------|-----------------|----------------|-------------------------------------|----------------------------------|------------------|
| 90.7(2,2)<br>N,N 97.1(3) <sup>d</sup><br>O N 03.7(3) <sup>d</sup> | 84.0-162.6(2) | 0,0 90.0(1,2.7)                                                                                                   | O,O 84.7(1,2)<br>95.1(1,8.5) | 167.5(1,8.8)                              | 0,0 90.6(1,2.5)                                                    |               | 0,0 90.5(1,1.9)         | 176.6(2)         | 0,N 83.2(I) <sup>5</sup> | 94.7(2)<br>165.9(2) | 0,0 90.6(7,1.6)                    |                            |               | 0,0 91.1(6,8)      | 176.5(7)  | 0,N 84.8(7) <sup>c</sup> | 94.0(7)     | 159.8(9) | 0,0 90.0(1,4.2) | (/.c,1)c./01   |                                     | 0,0 92.0(1,12.4)<br>164 8(1 3 8) | (0:01)0:01       |
|                                                                   |               | 3.055<br>Not given                                                                                                |                              |                                           | 3.188(1)<br>112.2(1)                                               | ~             |                         |                  |                          |                     | 3.211(6)                           | (1)11(1)                   |               |                    |           |                          |             |          | (1)005.5        | nou given      |                                     |                                  |                  |
| mspN 2.014(8,7)<br>$\mu O$ 1.923(5)<br>2,37777                    | (1)1107       | Ο 1.954(1)<br>μΗΟ 1.912(2)                                                                                        | O 1.961(2,18)<br>2.426(2)    | H <sub>2</sub> O 1.925(1)<br>μHO 1.876(1) | $\begin{array}{c} 0 & 1.982(3) \\ \mu O & 1.944(3) \end{array}$    | MeHO 2.478(4) | 0 1.930(3,11)           | $\mu O 1.897(3)$ | N 2.028(4)               |                     | $\mu O 1.96(2,0)$                  | $\mu bzO 1.98(1,0)$        | CITUO 2.72(2) | $\mu 0 1.93(1)$    | N 2.04(2) | $\mu bzO 1.97(1)$        | bzO 1.93(2) |          | (5)6/6/1 OI     | (7)            | $\mathbf{H}_{2}\mathbf{O}$ 2.200(4) | U 1.966(2,12)<br>HO 1 909(3)     | (c) course ourse |
|                                                                   |               | CuO <sub>4</sub> (×1)                                                                                             | CuO <sub>5</sub> (×2)        |                                           | CuO <sub>6</sub> (×1)                                              |               | CuO <sub>3</sub> N (×2) |                  |                          |                     | $CuO_6(\times 1)$                  |                            |               | $CuO_3N(\times 2)$ |           |                          |             |          | CUU5(X1)        |                |                                     | CUU5 (X2)                        |                  |
|                                                                   |               | 97.32(9)<br>110.38(9)<br>109.53(9)                                                                                |                              |                                           | 73.84(1)<br>84.40(1)                                               | 69.15(1)      |                         |                  |                          |                     |                                    | 113.90(5)                  |               |                    |           |                          |             |          | (C) 13 00       | (7)10.06       |                                     |                                  |                  |
|                                                                   |               | 7.881(9)<br>9.658(11)<br>10.368(12)                                                                               |                              |                                           | 14.793(3)<br>10.533(3)                                             | 8.127(2)      |                         |                  |                          |                     | 8.210(9)                           | 29.77(5)                   | 11/1/.71      |                    |           |                          |             |          | (4)10171        | (7)240.7       | (0)070.61                           |                                  |                  |
|                                                                   |               | tr<br>Р-1                                                                                                         |                              |                                           | tr<br>P-l                                                          | 1             |                         |                  |                          |                     | B                                  | P2 <sub>1</sub> /c         | 1             |                    |           |                          |             |          | E 4             | 1/1/C          | 7                                   |                                  |                  |
|                                                                   |               | Cu <sub>3</sub> (µ-OH) <sub>2</sub> (µ-nicNO) <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub><br>(dark bluish green) |                              |                                           | $Cu_3(\mu-deae)_2(\mu-bz)_2(bz)_2$ .<br>(MeOH) <sub>2</sub> (blue) |               |                         |                  |                          |                     | $Cu_3(\mu-dbae)_2(\mu-bz)_2(bz)_2$ | (EtOH) <sub>2</sub> (blue) |               |                    |           |                          |             |          |                 | (hright arean) | (VIIBIL BLOCK)                      |                                  |                  |

| Compound (colour)                                                                    | Cryst. cl.<br>space gr.<br>Z | a (¢)<br>b (¢)<br>c (¢) | $\begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \gamma \end{pmatrix}$ | Chromophore               | $Cu-L(\mathbf{\hat{A}})$              | $Cu-Cu(\dot{A})$<br>$Cu-L-Cu(^{\circ})$ | L-Cu-L (°)                        | Ref. |
|--------------------------------------------------------------------------------------|------------------------------|-------------------------|---------------------------------------------------------------------|---------------------------|---------------------------------------|-----------------------------------------|-----------------------------------|------|
|                                                                                      | E                            | 16.45(7)                |                                                                     |                           | H <sub>2</sub> O 1.978(3)<br>2.247(3) | 1 780/4 80)                             |                                   | 41   |
| Custmento)2014<br>(dark green)                                                       | P2 <sub>1</sub> /a           | 10.445(7)               | 101.52(8)                                                           | Curv2O2Cr (×1)            | μΟ 1.90(1)                            | 105.3(5)                                | N,N 128.3(7)                      | F    |
|                                                                                      | 4                            | 10.4/(1)                |                                                                     |                           | CI 2.214(6)                           |                                         | U,N 80.8(6,2.7)<br>91.5(6)        |      |
|                                                                                      |                              |                         |                                                                     |                           |                                       |                                         | 138.2(6,9.8)                      |      |
|                                                                                      |                              |                         |                                                                     | CuCl <sub>2</sub> ON (×1) | $\mu_3 O 1.93(1)$                     |                                         | CI,CI 95.4(2)                     |      |
|                                                                                      |                              |                         |                                                                     |                           | N 2.08(2)                             |                                         | O,N 84.4(5) <sup>c</sup>          |      |
|                                                                                      |                              |                         |                                                                     |                           | (04°C)/C7.7 ID                        |                                         | (c)c.00 0.10                      |      |
|                                                                                      |                              |                         |                                                                     |                           |                                       |                                         | Cl,N 94.6(5)                      |      |
|                                                                                      |                              |                         |                                                                     |                           |                                       |                                         | 163.0(5)                          |      |
|                                                                                      |                              |                         |                                                                     | CuO <sub>2</sub> NCI (×1) | $\mu_3 O 2.02(1)$                     |                                         | 0,0 82.1(5)                       |      |
|                                                                                      |                              |                         |                                                                     |                           | μO 1.91(1)                            |                                         | O,N 80.5(6) <sup>c</sup>          |      |
|                                                                                      |                              |                         |                                                                     |                           | N 2.01(1)                             |                                         | 161.3(6)                          |      |
|                                                                                      |                              |                         |                                                                     |                           | CI 2.211(6)                           |                                         | O,CI 97.7(4)                      |      |
|                                                                                      |                              |                         |                                                                     |                           |                                       |                                         | 158.4(4)                          |      |
|                                                                                      |                              |                         |                                                                     |                           |                                       |                                         | N,CI 94.0()                       |      |
| $\left[ Cu_{3}(\mu - dapo)_{3}(\mu - O_{2}NO) \right] (NO_{3})_{2}$                  | Е                            | 13.131(6)               |                                                                     | $CuO_2N_2(\times I)$      | $\mu 0 1.940(10,12)$                  | 3.479(3,178)                            | 0,0 98.7(4)                       | 42   |
| (Dlue)                                                                               | n/124                        | 15.204(5)               | (7)00.021                                                           |                           | (C,8)186.1 N                          | 127.4(3,12.1)                           | N,N 91.5(5)                       |      |
|                                                                                      | 4                            | (0)(10.01               |                                                                     |                           |                                       |                                         | O,IN 04-0(J,I)                    |      |
|                                                                                      |                              |                         |                                                                     | $CuO_3N_2$ (×2)           | $\mu O 1.950(8,21)$                   |                                         | 0,0 93.4(4,1.3)                   |      |
|                                                                                      |                              |                         |                                                                     |                           | N 2.003(10,27)                        |                                         | N,N 94.6(5,1.2)                   |      |
|                                                                                      |                              |                         |                                                                     |                           | O <sub>2</sub> NO 2.507(10,35)        |                                         | O,N 85.4(4,7) <sup>c</sup>        |      |
| [Cu <sub>3</sub> ( <i>µ</i> -dapo) <sub>3</sub> (dapoH) <sub>0.5</sub> .             | Ħ                            | 18.435(16)              |                                                                     | $CuO_2N_2(\times 1)$      | $\mu O 1.959(10,6)$                   | 3.521(3,173)                            | 0,0 97.4(4)                       | 43   |
| (SO <sub>4</sub> )(H <sub>2</sub> O)]SO <sub>4</sub> · 5H <sub>2</sub> O (dark blue) | P21/n                        | 15.072(14)              | 97.03(9)                                                            |                           | N 2.017(12,4)                         | 127.7(5,11.3)                           | N,N 90.5(5)                       |      |
|                                                                                      | 4                            | 10.611(14)              |                                                                     |                           |                                       |                                         | <b>O,N</b> 85.8(4,5) <sup>6</sup> |      |
|                                                                                      |                              |                         |                                                                     |                           |                                       |                                         | 174.4(5,1.8)                      |      |

TABLE I (Continued)

|                                                                                                                                    |                         |                                    |                                    | CuO <sub>3</sub> N <sub>2</sub> (×1) | μ0<br>Ν<br>Η2Ο    | 1.962(10,1)<br>2.033(14,6)<br>2.347(12) |             | 0,0 96.5(4,5.7)<br>N,N 94.6(5)<br>0,N 86.0(5,3) <sup>c</sup><br>93.2(5,1.8)<br>167.6(5,2.8) | _       |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------|------------------------------------|--------------------------------------|-------------------|-----------------------------------------|-------------|---------------------------------------------------------------------------------------------|---------|
|                                                                                                                                    |                         |                                    |                                    | $CuO_3N_2 (\times I)$                | oʻ z              | 1.974(9,18)<br>2.007(13.19)             |             | O,O 97.5(4,3.3)<br>N.N 91.8(5)                                                              |         |
|                                                                                                                                    |                         |                                    |                                    |                                      | 03SO              | 2.496(13)                               |             | O,N 84.7(5,2.2)<br>89.8(4)<br>175.0(5,1.2                                                   |         |
| [Cu <sub>3</sub> (µ-dmg) <sub>2</sub> (tmtac) <sub>2</sub> Br]ClO <sub>4</sub> .<br>MeOH (black)                                   | OI<br>Drom              | 14.006(7)                          |                                    | CuN4Br (×1)                          | Zå                | 1.960(12,6)<br>2 571(A)                 | 3.381(4)    | N,N 80.6(7,5) <sup>c</sup>                                                                  | 4       |
|                                                                                                                                    | 4                       | 19.27(1)                           |                                    |                                      | ā                 | (+)))((?7                               |             | N.Br 101.9(4,1.)                                                                            | _       |
|                                                                                                                                    |                         |                                    |                                    | $CuN_3O_2(\times 2)$                 | Z                 | 2.068(18,14)<br>2.252(13)               |             | N,N 84.0(8,2.5)<br>O,O 93.8(4)                                                              |         |
|                                                                                                                                    |                         |                                    |                                    |                                      | 0                 | 1.909(10,2)                             |             | N,O 95.5(6,8.4)<br>172.8(6,1.3                                                              | _       |
| Cu <sub>3</sub> (u-dmcpz) <sub>4</sub> (dmcpz) <sub>2</sub><br>(not given)                                                         | m<br>P2 <sub>1</sub> /c | 17.286(3)<br>20.649(4)             | 114.51(1)                          | CuN4 (×1)                            | z                 | 2.009(3,6)                              | 3.490(1,10) | N,N 90.0(1,9.6)<br>165.9(1,5)                                                               | 45      |
|                                                                                                                                    | Ŧ                       | 10.498(2)                          |                                    | CuN3O (x2)                           | zo                | 1.960(3,30)<br>2.093(3,9)               |             | N,N 95.1(1,6.7)<br>169.1(1,1.1<br>N,O 80.0(1,2) <sup>6</sup>                                | ~       |
|                                                                                                                                    |                         |                                    |                                    |                                      |                   |                                         |             | 90.4(1,4)<br>173.2(1.1.3                                                                    | ~       |
| [Cu <sub>3</sub> (μ-dpg) <sub>2</sub> (bpy) <sub>2</sub> (MeOH) <sub>2</sub> ] .<br>(NO <sub>3</sub> ) <sub>2</sub> (black purple) | 다 <mark>-</mark> -      | 12.114(7)<br>12.757(8)<br>9.817(2) | 82.31(4)<br>100.54(3)<br>119.09(5) | CuN4O2 (×1)                          | N<br>O2NO         | 1.998(3,1)<br>2.565(4)                  | 3.741(2)    | N,N 80.9(1) <sup>6</sup><br>99.1(1)                                                         | ,<br>46 |
|                                                                                                                                    |                         |                                    |                                    | CuO <sub>3</sub> N <sub>2</sub> (×2) | 0<br>MeHO<br>bpyN | 1.909(3,0)<br>2.296(3)<br>2.034(3,6)    |             | 0,0 97.4(1,5.5)<br>N,N 79.5(1) <sup>c</sup><br>0,N 87.8(1,5)<br>163.9(1,1.4                 |         |

| TABLE I (Continued)                                                                                                                                                                                                                                           |                              |                                     |                                                                                                                                                                                     |                       |                                                                |                                         |                                                         |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|------|
| Compound (colour)                                                                                                                                                                                                                                             | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)             | $\substack{\alpha \\ \beta \\ \gamma \end{array} () \qquad $ | Chromophore           | $Cu-L( {A})$                                                   | $Cu-Cu(\dot{A})$<br>$Cu-L-Cu(^{\circ})$ | $L-Cu-L(^{\circ})$                                      | Ref. |
| $ [Cu_3(\mu\text{-metz})_6(H_2O)_4](F_3CSO_3)_6 \\ 4H_2O (not given) $                                                                                                                                                                                        | hx<br>R-3<br>3               | 14.075(3)<br>34.655(8)              |                                                                                                                                                                                     | CuN <sub>6</sub> (×1) | N 2.14(5)                                                      | 3.719(7)                                | N,N 90.0(1.6,1.0)                                       | 47   |
|                                                                                                                                                                                                                                                               | )                            |                                     |                                                                                                                                                                                     | $CuN_3O_2$ (×2)       | N 2.14(5)<br>H <sub>2</sub> O 1.99(4)                          |                                         | N,N 93.3(1.6)<br>0,0 80.6(1.6)<br>N 0 977(1.4.5)        |      |
| [Cu <sub>3</sub> (3'-gmp) <sub>2</sub> (3'-gmpH) <sub>2</sub> (H <sub>2</sub> O) <sub>5</sub> ].<br>7H <sub>2</sub> O (green)                                                                                                                                 | ~ C B                        | 29.140(7)<br>6.865(5)<br>16.980(7)  | 90.31(3)                                                                                                                                                                            | CuO <sub>5</sub> (×1) | O 1.925(5)<br>2.01(2)<br>2.55(2)                               | Not given                               | Not given                                               | 48   |
|                                                                                                                                                                                                                                                               |                              |                                     |                                                                                                                                                                                     |                       | H <sub>2</sub> O 1.87(1)<br>2.55(2)                            |                                         |                                                         |      |
|                                                                                                                                                                                                                                                               |                              |                                     |                                                                                                                                                                                     | CuO4N (×2)            | O 1.95(-,3)<br>H <sub>2</sub> O 1.982(7)<br>2.26<br>N 1 998(6) |                                         | Not given                                               |      |
| [Cu <sub>3</sub> (µ-oxpn) <sub>2</sub> (ClO <sub>4</sub> ) <sub>2</sub> ] <sub>2</sub><br>(not given)                                                                                                                                                         | m<br>P2 <sub>1</sub> /c      | 12.257(2)<br>14.697(5)<br>15.877(5) | 104.62(2)                                                                                                                                                                           | CuO <sub>5</sub> (×1) | 0 1.936(4,16)<br>2.518(5)                                      | 5.159<br>92.3(2)                        | 0,0 85.7(2,2) <sup>c</sup><br>92.3(2,5.3)<br>174.62.43  | 49   |
|                                                                                                                                                                                                                                                               | r                            | (0)710.01                           |                                                                                                                                                                                     | CuN4O (×2)            | N 1.984(5.25)<br>O <sub>3</sub> CIO 2.646(8,18)                |                                         | N,N 83.7(2,0) <sup>c</sup><br>93.2(2,5)<br>90.9(2,1)    |      |
|                                                                                                                                                                                                                                                               |                              |                                     |                                                                                                                                                                                     |                       |                                                                |                                         | 1/1.0(2,4.9)<br>N,O 91.4(2,8.6)                         |      |
| [Cu <sub>3</sub> (C <sub>12</sub> H <sub>24</sub> N <sub>4</sub> O <sub>2</sub> ) <sub>2</sub> ] .<br>[Cu <sub>4</sub> (C <sub>12</sub> H <sub>24</sub> N <sub>4</sub> O <sub>2</sub> ) <sub>3</sub> ]<br>(NO <sub>2</sub> ), · 2H <sub>2</sub> O (male blue) | - P-1                        | 12.426(1)<br>13.405(1)<br>15.605(2) | 102.35(1)<br>105.34(1)<br>113.74(1)                                                                                                                                                 | CuO4 (×1)             | O 1.925(4,14)                                                  | 5.190(1)                                | 0,0 86.4(1) <sup>c</sup>                                | 50   |
| (and and) (744 b(6))                                                                                                                                                                                                                                          |                              | (-)                                 |                                                                                                                                                                                     | CuN4 (×2)             | N 1.985(5,16)                                                  |                                         | N,N 82.5(1) <sup>c</sup><br>93.2(2,1.8)<br>165 1(2 8 0) |      |
|                                                                                                                                                                                                                                                               |                              |                                     |                                                                                                                                                                                     | CuN4<br>CuO3N2        | see Table III<br>(tetramer)                                    |                                         |                                                         |      |

| [Cu <sub>3</sub> (µ-C <sub>12</sub> H <sub>22</sub> N <sub>2</sub> O <sub>2</sub> S <sub>4)2</sub> ](ClO <sub>4</sub> ) <sub>2</sub><br>(green) | or<br>Pbca<br>8 | 15.638(6)<br>18.254(9)<br>29.437(7) |                                    | $CuS_4(\times 1)$                      | S 2.261(3,6)                                                  | 5.699(1,16) | S,S 90.9(1,2) <sup>c</sup><br>89.2(1,9)<br>178.2(2,6)                                                      | 51 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------|------------------------------------|----------------------------------------|---------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                 |                 |                                     |                                    | $CuO_2N_2S_2$ ( × 2)                   | N 1.98(1,1)<br>O 2.39(1,3)<br>S 2.361(5,35)                   |             | 0,0 158.1(6,1)<br>N,N 81.2(4,1) <sup>c</sup><br>S.S 86.2(2,8)                                              |    |
| {{[(bapa)Cu] <sub>2</sub> [µ-Cu(Me <sub>2</sub> pba)]} .<br>(CIO <sub>4</sub> ) <sub>2</sub> (dark blue)                                        | or<br>Pcba<br>8 | 40.492(4)<br>16.363(3)<br>10.944(3) |                                    | CuO <sub>2</sub> N <sub>2</sub> ( × 1) | O 1.982(7,12)<br>N 1.931(11,32)                               | Not given   | 0,0 96.2(3)<br>N,N 91.0(4) <sup>d</sup><br>O,N 86.4(4,1.5) <sup>c</sup><br>176.5(3,1.7)                    | 52 |
|                                                                                                                                                 |                 |                                     |                                    | CuN <sub>3</sub> O <sub>2</sub> ( × 2) | N 2.028(8,37)<br>O 2.019(6,38)<br>2.298(7,12)                 |             | N.N 93.1(4,37) <sup>d</sup><br>156.3(5,4)<br>0,0 79.9(3,1) <sup>c</sup><br>N,0 94.9(3,171)<br>174.0(3.2.6) |    |
| {[{pmd})Cu] <sub>2</sub> [µ-Cu(Me <sub>2</sub> pba]] ·<br>(ClO <sub>4</sub> )}ClO <sub>4</sub> · 3H <sub>2</sub> O <sup>e</sup> (dark blue)     | tr<br>P-1<br>4  | 19.610(4)<br>16.626(4)<br>16.007(3) | 115.75(3)<br>89.97(3)<br>100.86(4) | $CuO_3N_2$ ( × 1)                      | O 1.986(9,5)<br>N 1.939(11,1)<br>O <sub>3</sub> CIO 2.448(12) | Not given   | 0,0 96.9(4)<br>N,N 94.4(5)<br>O,N 84.1(4,2) <sup>c</sup><br>173.8(3.1)                                     | 52 |
|                                                                                                                                                 |                 |                                     |                                    | CuN <sub>3</sub> O <sub>2</sub> ( × 2) | N 2.040(13,38)<br>O 1.951(10,20)<br>2.273(11,23)              |             | N.N 87.3(5,7) <sup>6</sup><br>149.7(6,2.6)<br>0,0 79.8(4,4) <sup>6</sup><br>N,0 99.6(5,12.3)<br>176.7(6 8) |    |
|                                                                                                                                                 |                 |                                     |                                    | $CuO_3N_2$ ( × 1)                      | O 1.973(11,1)<br>N 1.927(19,3)<br>O <sub>3</sub> ClO 2.673(7) | Not given   | 0,0 96.5(4)<br>N,N 94.5(5)<br>O,N 84.6(4,4) <sup>6</sup><br>178.4(4,1)                                     |    |
|                                                                                                                                                 |                 |                                     |                                    | CuN <sub>3</sub> O <sub>2</sub> ( × 2) | N 2.033(13,19)<br>O 1.942(10,6)<br>2.231(11,5)                |             | N,N 86.7(5.1.6)<br>149.1(6.3.0)<br>0,0 81.1(4.2) <sup>6</sup><br>N,O 99.6(5.8.0)<br>176.6(5.1.5)           |    |

| Compound (colour)                                                                             | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)             | $\begin{array}{c} \alpha \ () \\ \beta \ () \\ \gamma \ () \end{array}$ | Chromophore                          | $Cu-L(\dot{A})$                                            | $Cu-Cu(\dot{A})$<br>$Cu-L-Cu(^{\circ})$    | $L-Cu-L(^{\circ})$                                                                                    | Ref.         |
|-----------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------|
| {[(ettmd)Cu}]/u-Cu(pba)] ·<br>(CIO4)2} (dark blue)                                            | m<br>P2 <sub>1</sub> /c<br>4 | 18.463(4)<br>14.402(3)<br>16.537(4) | 109.00(3)                                                               | CuO <sub>3</sub> N <sub>2</sub> (×1) | O 1.965(10,5)<br>N 1.91(1,0)<br>O <sub>3</sub> ClO 2.52(3) | Not given                                  | 0,0 89.4(8,10.8)<br>N,N 94.9(6)<br>0,N 85.4(5,1.4) <sup>6</sup><br>0,N 85.4(5,1.4) <sup>6</sup>       | 52           |
|                                                                                               |                              |                                     |                                                                         | CuN <sub>3</sub> O <sub>2</sub> (×2) | N 2.06(2,5)<br>O 1.97(1,1)<br>2.215(10,25)                 |                                            | N,N 869(7),2)°<br>N,N 869(7),2)°<br>148.5(7,8.9)<br>O,O 79.9(5,1)°<br>N,O 100.1(7,10.6)<br>175.7(3.1) |              |
| [Cu₃(μ-dapo)չ(dapoH)₂]I₄ ·<br>MeOH (deep blue)                                                | m<br>P2 <sub>1</sub> /c<br>4 | 12.255(4)<br>12.999(5)<br>19.873(5) | 97.45(2)                                                                | CuN2O2 (×1)                          | N Not given<br>μΟ 1.98(1,2)                                | Not given<br>116.3(6,1.9)                  | Not given                                                                                             | 53           |
|                                                                                               |                              |                                     |                                                                         | CuN <sub>3</sub> O (×2)              | N Not given<br>40 2.01(1.1)                                |                                            | Not given                                                                                             |              |
| 3(µ-dapo) <sub>3</sub> (dapoH) <sub>2</sub> (µ-SCN) ·<br>(NCS)](SCN) <sub>2</sub> (dark blue) | m<br>P2 <sub>1</sub> /n<br>4 | 9.992(7)<br>20.186(13)<br>15.179(9) | 98.00(5)                                                                | CuN4O                                | N 2.011(16,43)<br>μO 1.997(1)<br>SCN 2.696(9)              | 3.348(3,52)<br>O 116.6(5,2.4)<br>S 70.6(2) | N,N 88.8(6) <sup>d</sup><br>96.0(6,8.9)<br>159.8(5)<br>O,N 84.9(5) <sup>c</sup>                       | <del>5</del> |
|                                                                                               |                              |                                     |                                                                         | CuO <sub>2</sub> N <sub>2</sub> S    | $\mu O$ 1.945(10,4)<br>N 2.042(5,36)<br>$\mu CNS$ 2.885(7) |                                            | 92.0(5,9)<br>0,0 92.1(4)<br>N,N 97.8(6)<br>0,N 86.0(5,6) <sup>c</sup><br>169.2(6.2.3)                 |              |
|                                                                                               |                              |                                     |                                                                         | C <sub>u</sub> N <sub>3</sub> OS     | N 2.010(15,22)                                             |                                            | 0,S 90.4(3,8.7)<br>N,S 90.2(5,3.5)<br>N,N 93.6(6,3)                                                   |              |

| :                                                                              | 55                                                 |                                                                                               | 56                                                                                             |                                                                                | 5                                                  | ic i                    |                                       |                                        |
|--------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|---------------------------------------|----------------------------------------|
| 148.2(6)<br>83.9(5) <sup>c</sup><br>92.6<br>171.5(5)<br>99.9(5,9.9)<br>86.4(3) | 91.9(8,8) <sup>4</sup><br>86.2(8,2.4) <sup>c</sup> | 91.7(9,1) <sup>d</sup><br>85.1(8,1.5) <sup>c</sup>                                            | 84.5(2) <sup>c</sup><br>89.3(2,5)                                                              | 94.9(2,9.9)<br>89.4(2) <sup>6</sup><br>82.0(2,2.7) <sup>6</sup><br>94.3(2,3.4) | 85.4(2) <sup>c</sup><br>91.6(2,2.3)<br>91.6(2,2.3) | 70.0(2,4)<br>133.85(11) | 77.9(3,3)°<br>153.94(27)              | 93.61(8)<br>100.6(2,6.4)<br>162.70(18) |
| N,O<br>N,S<br>O,S                                                              | z oʻz                                              | N N<br>N N                                                                                    | z o<br>z z                                                                                     | 0,0<br>0,1<br>0,1                                                              | z o z<br>z z z                                     | כיכ                     | z.<br>z                               | CC<br>VCI                              |
|                                                                                | 3.44(5,1)<br>121.9(7,1)                            | 3.453(6,40)<br>121.3(6,2.7)                                                                   | 3.840(1)<br>121.5(2)                                                                           |                                                                                |                                                    | 130.84(9)               |                                       |                                        |
| 2.816(8)                                                                       | 2.026(22,56)<br>2.755(35,105)<br>2.564(10 22)      | 2.004(15,02)<br>1.968(14,56)<br>2.014(22,44)<br>2.748(25,98)<br>2.553(26,231)<br>1.981(14,23) | 2.023(4,4)<br>2.437(4)                                                                         | 2.014(4,6)<br>1.965(4)<br>2.342(4,14)<br>2.434                                 | 2.015(4,9)<br>2.562(5)<br>2.201013                 | 2.2730(20)              | 1.930(6)<br>2.042(7,2)                | 2.1931(20)<br>2.6042(12)               |
| μCNS                                                                           |                                                    |                                                                                               | enN<br>ædtaO                                                                                   | edtaN<br>edtaO<br>tedtaO                                                       | en N<br>H <sub>2</sub> O                           | σų                      | Z                                     | FG G                                   |
|                                                                                | CuN4O2                                             | CuN4O2                                                                                        | CuN4O <sub>2</sub> (×1)                                                                        | CuO4N2 (×2)                                                                    | CuN4O <sub>2</sub> (monomer)                       | (1×) Propo              | CuN <sub>3</sub> Cl <sub>2</sub> (×2) |                                        |
|                                                                                | 102.52(14                                          |                                                                                               | 95.4(2)<br>104.3(1)                                                                            | 101.5(1)                                                                       |                                                    |                         |                                       |                                        |
|                                                                                | 14.902(28)<br>16.598(20)<br>22.777(33)             | (00)211.77                                                                                    | 8.88(2)<br>10.93(1)                                                                            | 14.20(1)                                                                       | (6)597 01                                          | 12.514(12)<br>20.275(3) |                                       |                                        |
| :                                                                              | E ບິ∝                                              | 2                                                                                             | ц<br>Р-1                                                                                       | 7                                                                              | Ş                                                  | Pccn<br>4               |                                       |                                        |
|                                                                                | الالالالالالالالمهمارية<br>(not given)             |                                                                                               | $\begin{array}{l} [Cu_3(en)_2(\mu-edta)_2]\\ [Cu(en)_2(H_2O)_2]\\ 10H_2O \ (blue) \end{array}$ | х<br>/                                                                         | [[[Childhed]Habel]]                                | (dark green)            |                                       |                                        |

| TABLE I (Continued)                                                                                      |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                                   |                                                                               |                                                     |      |
|----------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------|------|
| Compound (colour)                                                                                        | Cryst. cl.<br>space gr.<br>Z | a (ỷ)<br>6 (ỷ)<br>6 (ỷ)             | $egin{array}{c} \alpha \ eta \ $ | Chromophore                 | CuL (Å)                                                           | $\frac{Cu-Cu(\mathbf{\dot{A}})}{Cu-L-Cu(^{\circ})}$                           | $L-Cu-L(^{\circ})$                                  | Ref. |
| {N(2amet)pipzH <sub>3</sub> }₄.<br>[Cu <sub>3</sub> (µ-Cl) <sub>2</sub> Cl <sub>2</sub> ][CuCl₄] (red)   | or<br>Ibam<br>4              | 16.697(5)<br>14.479(3)<br>23.757(7) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CuCl <sub>6</sub> (×1)      | $Cl_{eq} = 2.294(3,24)$<br>$\mu Cl_{ap} = 2.971(3)$               | 5.690(1)<br>179.38(2)                                                         | Cl,Cl 90.0(1,6.8)<br>180                            | 58   |
|                                                                                                          |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CuCl <sub>5</sub> (×2)      | Cled 2.312(3,47)<br>uCloc 2.719(3)                                |                                                                               | Cl,Cl 91.9(1,6.8)<br>172 2/1 2)                     |      |
|                                                                                                          |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CuCl4 (monomer)             | CI 2.245(2)                                                       |                                                                               | Cl,Cl 102.05(5,1.43)                                |      |
|                                                                                                          |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CuCl <sub>4</sub> (monomer) | CI 2.266(2)                                                       |                                                                               | Cl,Cl 96.16(5,29)<br>Cl,Cl 96.16(5,29)<br>141.82(5) |      |
| K <sub>2</sub> [Cu <sub>3</sub> (μ-I) <sub>2</sub> (qo) <sub>6</sub> ]<br>(dark red)                     | m<br>P2./c                   | 11.956(8)<br>15.506(7)              | (7)76-011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $CuO_2N_2I_2$ (×1)          | O 2.02(2,2)<br>N 1 96(3 0)                                        | Not given                                                                     | 0,0 180<br>N N 180                                  | 59   |
|                                                                                                          | 5                            | 13.910(9)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | μΙ 3.202(2,0)                                                     |                                                                               | O,N 84.9(4) <sup>c</sup>                            |      |
|                                                                                                          |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                                   |                                                                               | 1,1 180                                             |      |
|                                                                                                          |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CUU21V21 (X 2)              | N 1 99(11)                                                        |                                                                               | (c)1.001 0,0<br>N N N 163 6(4)                      |      |
|                                                                                                          |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | μΙ 2.717(2)                                                       |                                                                               | 0,N 82.0(4,2) <sup>c</sup>                          |      |
|                                                                                                          |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                                   |                                                                               | 94.6(4,6)                                           |      |
|                                                                                                          |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                                   |                                                                               | O,I 102.5(3,1.0)<br>N I 98 2(3 5)                   |      |
| [Cu <sub>3</sub> (ac) <sub>4</sub> (H <sub>2</sub> O)(bpy) <sub>3</sub> ](PF <sub>6</sub> ) <sub>2</sub> | ц<br>Г                       | 11.529(1)                           | 82.01(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CuO_3N_2$ (×1)             | acO 1.955(4,17)                                                   | 3.196(1)                                                                      | Not given                                           | 99   |
|                                                                                                          | 2                            | 17.153(2)                           | 89.62(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | bpyN 1.992(4,12)                                                  | (1)000-1<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1 |                                                     |      |
|                                                                                                          |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $CuO_3N_2$ (×2)             | µасО 1.950(3,4)<br>1.980(4,15)<br>2.338(2,62)<br>bpyN 1.991(4,10) | (6.7,1)2.66                                                                   | Not given                                           |      |

| [Cu <sub>3</sub> (L <sub>3</sub> -CO <sub>3</sub> )(pip) <sub>3</sub> (H <sub>2</sub> O) <sub>3</sub> ] ·<br>(NO <sub>3</sub> )4 (blue)                                         | hx<br>P-62c<br>2             | 13.414(3)<br>16.024(2)              |                                   | CuO <sub>3</sub> N <sub>3</sub>      | N 2.0<br>$\mu_3 O_2 CO 1.9$<br>$\mu_3 O_2 CO_{ap} 2.6$ | 0(2,4)<br>56(20)<br>9(2)                     | 4.63      | Not given                                                                   | 61 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------------------|----------------------------------------------|-----------|-----------------------------------------------------------------------------|----|
| [Cu <sub>3</sub> (R,S-pa) <sub>2</sub> (R,S-Hpa) <sub>6</sub> ·<br>(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> ](CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> (not given) | tr<br>P-1<br>1               | 10.345(2)<br>10.720(2)<br>13.619(2) | 80.40(2)<br>71.41(2)<br>85.14(2)  | CuO4N2 (×1)                          | 2.6<br>N 1.9<br>O 1.9<br>2.6                           | 90(2,33)<br>90(2,33)<br>15(2,53)<br>47(7,32) | 4.90(1,2) | O,O 90.0(6.9)<br>178.9(1,9)<br>N,N 175.8(9)<br>O,N 84.8(9,1.7) <sup>c</sup> | 62 |
|                                                                                                                                                                                 |                              |                                     |                                   | CuO <sub>3</sub> N <sub>3</sub> (×2) | 0 1.9<br>2.4<br>N 2.0                                  | 56(5)<br>161(5,1)<br>22(6,13)                |           | 91.7(8,5.3)<br>0,0 96.7(2,2.1)<br>160.3(2)                                  |    |
|                                                                                                                                                                                 |                              |                                     |                                   |                                      |                                                        | ×<br>•                                       |           | N,N 94.5(2.2)<br>169.9(2)<br>O,N 79.7(2,28)<br>93.2(2,5.8)<br>174.4(7)      |    |
| [Cu <sub>3</sub> (μ-im) <sub>3</sub> (tmtac) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>3</sub><br>(deep blue)                                                                      | or<br>Pmn2 <sub>1</sub><br>4 | 21.337(3)<br>18.160(5)<br>13.742(2) |                                   | CuNs                                 | imN 2.0<br>tmtacN 2.2                                  | 35(25,59)<br>58(33,16)                       | 5.92      | N,N 82.8(11,3.3) <sup>c</sup><br>97.3(11,11.5)<br>170 5(11.3.9)             | 63 |
| Cu <sub>3</sub> (µ-5-pym) <sub>2</sub> (hfac) <sub>6</sub><br>(green)                                                                                                           | r<br>P-1                     | 11.875(1)<br>13.714(1)<br>11.411(1) | 91.28(1)<br>116.51(1)<br>64.59(1) | $CuO_4N_2(\times I)$                 | 0 2.1<br>N 2.0                                         | 00(6,92)<br>50(6)                            | 5.976(1)  | 0.0 88.7(2) <sup>d</sup><br>0,N 89.6(2,7)                                   | 64 |
|                                                                                                                                                                                 |                              |                                     |                                   | CuO4N (×2)                           | 0 1.9<br>N 2.2                                         | 49(6,15)<br>82(5)                            |           | O,O 92.0(2,2) <sup>d</sup>                                                  |    |
| Cu <sub>3</sub> (µ-nitet) <sub>2</sub> (hfac) <sub>6</sub><br>(not given)                                                                                                       | m<br>P2 <sub>1</sub> /c<br>4 | 19.22(1)<br>9.074(9)<br>19.71(1)    | 91.60(2)                          | CuO <sub>6</sub> (×1)                | hfacO 1.9<br>nitetO 2.4                                | 23(5,2)<br>52(4)                             | Not given | O,O 87.2(2) <sup>d</sup><br>83.6(1,1.2)                                     | 65 |
|                                                                                                                                                                                 |                              |                                     |                                   | CuO <sub>5</sub> (×2)                | hfacO 1.9<br>nitelO 2.1                                | 37(5,26)<br>80(5)                            |           | O,O 90.3(2,1.8)<br>93.8(2,13.7)<br>165.9(2,2.3)                             |    |

| IVERTE I (Command)                                                                        |                              |                                     |                                                                                                                                   |                         |                                                            |                                               |                                                                               |      |
|-------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------|------|
| Compound (colour)                                                                         | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)             | $egin{array}{c} lpha \left( ^{\circ}  ight) \ eta \left( ^{\circ}  ight) \ \gamma \left( ^{\circ}  ight) \end{array} \end{array}$ | Chromophore             | $Cu-L(\dot{A})$                                            | $Cu-Cu(\mathbf{\hat{A}})$ $Cu-L-Cu(^{\circ})$ | L-Cu-L (°)                                                                    | Ref. |
| Cu <sub>3</sub> (μ-nitppy) <sub>2</sub> (hfac) <sub>6</sub><br>(light green)              | ж С2/с                       | 36.540(9)<br>23.484(7)<br>21.202(6) | 118.90(2)                                                                                                                         | CuO <sub>6</sub> (×1)   | hfacO 1.93(1,1)<br>nitppyN 2.47(1,1)                       | Not given                                     | 0,0 91.6(5,1) <sup>d</sup><br>89.7(4,6.6)<br>177 944 1 2)                     | 99   |
|                                                                                           | 5                            | (0)-(                               |                                                                                                                                   | CuO <sub>5</sub> N (×2) | hfacO 2.01(1,18)<br>nitppyO 2.70(1,1)<br>nitppyN 2.01(1,2) |                                               | 0,0 91.6(4,2) <sup>d</sup><br>82.7(4,17.1)<br>82.7(4,17.1)<br>0,N 92.6(4,9.1) |      |
| Cu <sub>3</sub> (µ-Pr <sup>i</sup> tmio) <sub>2</sub> (hfac) <sub>6</sub><br>(dark green) | ר - P. ני                    | 12.211(7)<br>9.142(4)<br>16.100(6)  | 96.12(3)<br>90.24(4)<br>96.70(4)                                                                                                  | $CuO_6( \times 1)$      | O 1.92(1,0)<br>2.58(3)                                     | Not given                                     | 0,0 926(6) <sup>d</sup>                                                       | 67   |
|                                                                                           | -                            | (0)601.01                           | (+)07.06                                                                                                                          | CuO4N (×2)              | O 1.93(1,21)<br>2.18(1)<br>N 2.02(1)                       |                                               | O,O 89.7(6,9) <sup>d</sup><br>89.6(6,4.6)<br>177.5(8)<br>O,N 89.2(6,3)        |      |
| Cu <sub>3</sub> (µ-Ettmio)₂(hfac) <sub>6</sub><br>(dark green)                            | m<br>P2 <sub>1</sub> /c      | 8.948(3)<br>25.120(2)               | 103.92(3)                                                                                                                         | CuO <sub>6</sub> (×1)   | O 1.93(2,1)<br>2.48(2)                                     | Not given                                     | 112.4(5)<br>O,O 92(1) <sup>d</sup>                                            | 67   |
|                                                                                           | 7                            | (9)83(0)                            |                                                                                                                                   | CuO4N (×2)              | O 1.92(2,4)<br>2.21(2)<br>N 1.99(3)                        |                                               | O,O 90(1,2) <sup>d</sup><br>90(1,6)<br>176(2)<br>O,N 90(1,11)                 |      |
| Cu <sub>3</sub> (µ-phitmio) <sub>2</sub> (hfac) <sub>6</sub><br>(green)                   | PI<br>-                      | 15.507(10)<br>8.338(4)<br>14.644(7) | 75.30(4)<br>93.88(4)<br>96.03(4)                                                                                                  | CuO <sub>6</sub> (×1)   | O 1.96(5,5)<br>2.53(4,1)                                   | Not given                                     | 162(1)<br>0,0 91(2,3) <sup>d</sup><br>85;105(2)<br>175(2,2)                   | 68   |

TABLE I (Continued)

| 2011       |
|------------|
| January    |
| 23         |
| 14:40      |
| At:        |
| Downloaded |

|                             | 69                                                     |                                                    |            |
|-----------------------------|--------------------------------------------------------|----------------------------------------------------|------------|
| 0,0 91(2,7) <sup>d</sup>    | N,N 180.00<br>CI,CI 180.00<br>N.CI 90.0(3.1.5)         | N.N 87.7(4,0)<br>CI,CI 94.3(2,0)<br>N,CI 89.1(3,2) | 176.1(4,2) |
|                             | 7.360(2)                                               |                                                    |            |
| O 2.03(4,11)<br>N 2.04(5,3) | N 1.99(1,0)<br>Cl 2,246(24,0)                          | N 2.01(1,1)<br>CI 2.218(4,12)                      |            |
| CuO4N (×2)                  | CuN2Cl2 (×1)                                           | CuN <sub>2</sub> Cl <sub>2</sub> (×2)              |            |
|                             | 101.08(2)<br>96.94(2)<br>75.76(2)                      |                                                    |            |
|                             | 13.661(2)<br>14.174(3)<br>9.412(2)                     |                                                    |            |
|                             | tr<br>P-1                                              | I                                                  |            |
|                             | $[Cu_3(\mu-tepz)_2Cl_6] \cdot 2CHCl_3$<br>(blue green) |                                                    |            |

\*Where more than one chemically equivalent distance or angle is present the mean value is tabulated. The first number in parenthesis is e.s.d., the second is maximum deviation from the mean value. The chemical identity of coordination atom/ligand is specified in these columns. Five-membered metallocyclic ring. dSix-membered metallocyclic ring.
|              | Cov. rad. | Four-coordination | Five-coordination | Six-coordination |
|--------------|-----------|-------------------|-------------------|------------------|
| Coord. atom  |           |                   |                   | ·····            |
| $\mu_3 O(H)$ | 0.73      | 1.96              | 2.00              | 1.99             |
| $\mu O(H)$   |           | 1.91              | 1.90              |                  |
| O(L)         |           | 2.24              | 2.33              | 2.485            |
| 2-dent       |           | 1.955             | 2.115             | 2.03             |
| 3-dent       |           |                   | 2.32              | 2.39             |
| N(L)         | 0.75      |                   | 2.185             | 2.02             |
| 2-dent       |           | 2.00              | 2.03              | 2.03             |
| 3-dent       |           | 1.965             | 2.07              | 2.00             |
| Cl           | 0.99      | 2.24              | 2.29              | 2.30             |
| µ-Cl         |           | 2.28              | 2.58              | 2.67             |
| Br           | 1.14      | 2.39              | 2.605             |                  |
| μ-Br         |           | 2.43              |                   |                  |
| μ-Ι          | 1.33      |                   | 2.72              | 3.20             |
| Ring         |           |                   |                   |                  |
| 5-0          |           | 86.4              | 81.3              |                  |
| 5-N          |           | 80.3              | 83.4              | 81.7             |
| 5-S          |           | 90.9              |                   |                  |
| 5-0,N        |           | 83.9              | 84.2              | 84.6             |
| 6-0          |           |                   | 90.5              | 90.7             |
| 6-N          |           | 91.0              | 94.0              | 90.0             |
| 6-0,N        |           | 95.2              | 95.0              |                  |

TABLE IA

## **3 TETRAMERIC COPPER(II) COMPOUNDS**

### 3.1 Cu<sub>4</sub>( $\mu_4$ -O) Tetrahedron

Crystallographic and structural data for tetrameric copper(II) compounds are gathered in Table II. X-ray analysis of the green derivative<sup>71</sup> shows the cation [Cu<sub>4</sub>( $\mu_4$ -OH)( $\mu$ -bttt)(H<sub>2</sub>O)<sub>2</sub>]<sup>3+</sup> and NO<sub>3</sub><sup>-</sup> groups. The cation is centrosymmetric, with the central oxygen atom on a center of symmetry (Figure 4). Within the macrocyclic ring, only the saturated carbon atoms show significant deviation from planarity. Four copper(II) atoms are bound within the bttt macrocycle, each coordinated to one imine nitrogen, one phenoxide oxygen, one alkoxide oxygen, the central hydroxide anion and to one axial water. The macrocyclic oxygen donors are all deprotonated and each bridges two copper(II) atoms, so that the square plane about each copper shares two edges with the equivalent planes of the two neighboring copper atoms with two sets of Cu–Cu distances 2.953(1) and 3.000(1) Å (Table IIA). Structural data for derivatives which contain a Cu<sub>4</sub>( $\mu_4$ -O) tetrahedral core are summarized in (Table IIB). The structures are in order of increasing mean Cu–Cu distance.

There are twenty-nine complexes<sup>72-96</sup> which contain a  $\mu_4$ -oxo group tetrahedrally-coordinated to four copper(II) centers. Each pair of copper(II)

|                                                                                                                                       | TABLE                                         | II Crystallo            | ographic and                                                                                          | structural data                       | for tetrai                               | neric copper(]              | II) compounds <sup>a</sup>                 |                  |                                  |      |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|-----------------------------|--------------------------------------------|------------------|----------------------------------|------|
| Compound (colour)                                                                                                                     | Cryst. cl.<br>space gr.<br>Z                  | a (Å)<br>b (Å)<br>c (Å) | $\begin{array}{c} \alpha \left( \right) \\ \beta \left( \right) \\ \gamma \left( \right) \end{array}$ | Chromophore                           | Č                                        | - <i>T</i> (Å)              | $Cu-Cu(\dot{A})$<br>$Cu-L-Cu(^{\circ})$    |                  | с-Си-L (°)                       | Ref. |
| A: $Cu_4(\mu_4$ -OH) planar core<br>[ $Cu_4(\mu_4$ -OH)( $\mu$ -bttt)H <sub>2</sub> O) <sub>2</sub> ].<br>(NO <sub>3</sub> ), (green) | m<br>P2;/a                                    | 10.384(2)<br>18.515(5)  | 107.48(2)                                                                                             | CuO4N (×2)                            | μ <sub>4</sub> HO <sup>b</sup><br>ubtttO | 2.127(1)<br>1.890(5.26)     | 2.976(1,24)<br>HO <sup>a</sup> 90.0(1.9)   | 0,0 <sup>b</sup> | 88.4(2,6.2)<br>163.6(2)          | 71   |
|                                                                                                                                       | 7                                             | 11.264(2)               | <u>`</u>                                                                                              |                                       | μbtttN<br>H <sub>5</sub> O               | 1.937(5)<br>2.249(5)        | 180.0<br>O 103.1(2)                        | 0'N              | 98.5(2,4.1)<br>167.3(2)          |      |
|                                                                                                                                       |                                               |                         |                                                                                                       | $CuO_3N(\times 2)$                    | μ4HO<br>μbtitO                           | 2.082(1)<br>1.899(4,16)     |                                            | 0,0              | 83.7(2,2)<br>167.1(2)            |      |
| R. Cu.(uO) tetrahedron core                                                                                                           |                                               |                         |                                                                                                       |                                       | Z                                        | ,1.940(6)                   |                                            | 0,N              | 96.5(2,2.0)<br>175.4(1)          |      |
| $Cu_4(\mu_4-O)(\mu-Cl)_6(Et_2na)_4$                                                                                                   | ţg                                            | 15.213(3)               |                                                                                                       | CuCl <sub>3</sub> ON                  | μ4O                                      | 1.903(-,28)                 | 3.093 <sup>d</sup>                         | 0,CI             | 84.3(-,3.1)                      | 72   |
| (red brown)                                                                                                                           | 14 <sub>1</sub><br>4                          | 22 864(4)               |                                                                                                       |                                       | dencN                                    | 1.953(12,23)<br>2 411(4 93) | O 109.0(-,3)<br>CI 80 3(1 1 7)             | น 5<br>5 5       | 95.5(4,2.8)<br>104 7/1 7)        |      |
|                                                                                                                                       | -                                             |                         |                                                                                                       |                                       |                                          | (0) (1) 11-2                | (1.11)                                     | 5                | 126.2(1.8.9)                     |      |
| $Cu_4(\mu_4-O)(\mu-Cl)_6(Et_2SO)_4$                                                                                                   | or                                            | 10.436(2)               |                                                                                                       | CuCl <sub>3</sub> O <sub>2</sub>      | $\mu_4 O$                                | 1.895(7,16)                 | 3.094(2,26) <sup>d</sup>                   | C),Cl            | 119.3(1,10.1)                    | 73   |
| (orange)                                                                                                                              | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> | 11.092(2)               |                                                                                                       |                                       | Et <sub>2</sub> SO                       | 1.922(8,13)                 | O 109.5(4,1.6)                             | 0,0              | 177.3(4,1.1)                     |      |
| [Cu4(#4-O)(#-Cl)4(Me3O)4].                                                                                                            | 4<br>0                                        | 29.679(7)<br>10.582(2)  |                                                                                                       | CuCl <sub>4</sub> O,                  |                                          | 2.408(3,43)<br>1.896(9.21)  | CI 80.0(1,1.3)<br>3.095(3.23) <sup>d</sup> | 0,0<br>0,0       | 90.0(3,7.3)<br>119.33(19.5.84)   | 74   |
| Me <sub>2</sub> SO (orange)                                                                                                           | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> | 10.571(2)               |                                                                                                       | •                                     | Me <sub>2</sub> SO                       | 1.928(11,15)                | 0 109.5(5,2.1)                             | CľO              | 85.3(3,1.2)                      |      |
|                                                                                                                                       | 4                                             | 28.255(5)               |                                                                                                       |                                       | μCI                                      | 2.412(5,52)                 | CI 79.8(1,1.4)                             |                  | 95.3(4,3.1)                      |      |
| C., (., O)(., Cl) (mod)                                                                                                               | ł                                             |                         |                                                                                                       |                                       | :                                        | 1 005/4 7)                  | 3 005/1 422                                | 0 t<br>0 t       | 177.7(5,1.4)                     | 26   |
| Cu4(µ4-O)(µ-CI)6(mpu)3 ·<br>(mpdH <sub>2</sub> O) (brown)                                                                             | т<br>Р2,/п                                    | 7.002(2)<br>22.051(5)   | 96.65(1)                                                                                              |                                       | D44<br>Opdm                              | 1.893(4,7)<br>1.918(5.5)    | O 109.5(2.1.3)                             |                  | 119.60(9,8.63)<br>85.02(14.1.74) | c    |
|                                                                                                                                       | 4                                             | 17.278(3)               |                                                                                                       |                                       | <sup>FCI</sup>                           | 2.406(2,95)                 | Cl 80.1(7,9)                               |                  | 94.96(18,5.76)                   |      |
|                                                                                                                                       |                                               |                         |                                                                                                       |                                       | 1                                        |                             |                                            | 0,0              | 175.37(22,2.14)                  |      |
|                                                                                                                                       |                                               |                         |                                                                                                       | CuCl <sub>3</sub> O <sub>2</sub> (×1) | Н <sub>4</sub> О                         | 1.936(6)<br>1.936(6)        |                                            | 0<br>0<br>0      | 119.38(9,2.11)                   |      |
|                                                                                                                                       |                                               |                         |                                                                                                       |                                       | 2<br>D                                   | 2,404(2,2)                  |                                            | 5                | 94.54(22.4.10)                   |      |
|                                                                                                                                       |                                               |                         |                                                                                                       |                                       |                                          |                             |                                            | 0,0              | 175.23(26)                       |      |

| TABLE II (Continued)                                                                                             |                                   |                                                |                                                                                                        |                                  |                                 |                                                        |                                                               |                      |                                                                             |           |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|--------------------------------------------------------|---------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------|-----------|
| Compound (colour)                                                                                                | Cryst. cl.<br>space gr.<br>Z      | a (ỷ)<br>c (ỷ)                                 | $egin{smallmatrix} lpha(^{\circ}) \ eta(^{\circ}) \ \gamma(^{\circ}) \ \gamma(^{\circ}) \ \end{array}$ | Chromophore                      | Ĵ                               | - <i>T</i> (Å)                                         | $Cu-Cu(\dot{A})$<br>$Cu-L-Cu(^{\circ})$                       |                      | $L-Cu-L(^{\circ})$                                                          | Ref.      |
| $[Cu_4(\mu_4-0)(\mu-Cl)_6(2-Mepy)_4]$ .<br>H <sub>2</sub> O (dark olive green)                                   | m<br>P2 <sub>1</sub> /c<br>4      | 12.73(2)<br>12.07(2)<br>21.54(3)               | 90.7(2)                                                                                                | CuCl <sub>3</sub> ON             | μ40<br>μCI                      | 1.90(2,4)<br>1.99(2,3)<br>2.374(8,84)<br>2.639(8,46)   | 3.097(6,109)<br>O 109.4(8,6.4)<br>CI 78.6(3,1.9)              | C,C<br>O,N<br>O,N    | 104.0(4,9.0)<br>137.9(4,3.1)<br>152.7(4,2.7)<br>96.6(7,5.9)<br>177.0(9,1.3) | 76        |
| [Cu <sub>4</sub> (µ4-O)(µ-Cl) <sub>6</sub> (Ph <sub>3</sub> PO) <sub>4</sub> ].<br>0.7MeNO <sub>2</sub> (orange) | с<br>F-43с<br>°                   | 24.437(6)                                      |                                                                                                        | CuCl <sub>3</sub> O <sub>2</sub> | Ph <sub>3</sub> PO              | 1.897(1)<br>1.929(3)                                   | 3.098(2)<br>Not given                                         | 0,0<br>0,0<br>0,0    | 83.5(6,7.3)<br>90.0(4,5.3)<br>180.0                                         | <i>LT</i> |
| Cu4(µ4-O)(µ-Cl)6(py)4<br>(golden yellow)                                                                         | o<br>m<br>P2 <sub>1</sub> /n<br>4 | 11.29(2)<br>21.40(4)<br>11.96(2)               | 92.20(2)                                                                                               | CuCl <sub>3</sub> ON             | PAN PAN                         | 2.381(1)<br>1.90(2,2)<br>1.96(2,2)<br>2.408(9,78)      | 3.10(-,1)<br>O 109.5(-,1.5)<br>CI 80.2(-,1.4)                 | C C C C              | 84.8(6,2.1)<br>95.2(7,4.7)<br>116.2(3,8.3)                                  | 78        |
| Cu <sub>4</sub> (μ <sub>4</sub> -O)(μ-Cl) <sub>6</sub> (Ph <sub>3</sub> PO) <sub>4</sub><br>(orange)             | с<br>F-43с<br>с                   | 24.405(18)                                     |                                                                                                        | CuCl <sub>3</sub> O <sub>2</sub> | $\mu_4 O$<br>Ph <sub>3</sub> PO | 1.900(3)<br>1.88(3)                                    | 3.102(2)<br>O Not given                                       | CI,O                 | 134.0(3,3.9)<br>90.0(1,5.3)                                                 | 61        |
| [Cu4(µ4-O)(µ-Cl)6(MeCN)4]<br>2MeCN (brown)                                                                       | 8<br>C2/c<br>4                    | 8.795(2)<br>24.411(3)<br>12.414(3)             | 95.24(3)                                                                                               | CuCl <sub>3</sub> ON             | FO Z O                          | 2.387(5)<br>1.897(2,1)<br>1.943(4,11)<br>2.325(1,59)   | CI 81.0(2)<br>3.102(1,20)<br>O 109.5(1,1.1)<br>CI 80.8(1,1.0) | C, N<br>O, N<br>O, N | 119.19(4,5.51)<br>95.2(1,29)<br>177.4(2,4)                                  | 80        |
| Cu <sub>4</sub> (μ <sub>4</sub> -O)(μ-Cl) <sub>6</sub> (dmf) <sub>4</sub><br>(green) (at 100 K)                  | m<br>I2/a                         | 40.665(8)<br>15.742(5)                         |                                                                                                        | CuCl <sub>3</sub> O              | dmfO<br>Ω                       | 2.418(1,18)<br>1.923(9,28)<br>1.933(11,22)             | 3.103(3,16)<br>Not given                                      | C1,0                 | 84.82(9,61)<br>Not given                                                    | 81        |
| Cu₄(μ₄-O)(μ-Cl) <sub>6</sub> (dmf)₄<br>(yellow) (at 260 K)                                                       | х<br>П2/а<br>8                    | 8.238(4)<br>40.940(8)<br>15.878(6)<br>8 656(5) | (2)17.6/                                                                                               | CuCl <sub>3</sub> O <sub>2</sub> | dmf0<br>dmf0                    | 2.398(4,39)<br>1.901(8,38)<br>1.951(11,27)             | 3.104(3,21)<br>Not given                                      |                      | Not given                                                                   | 81        |
| Cu <sub>4</sub> (µ₄-O)(µ-CI) <sub>6</sub> (1-Meim)₄ <sup>c</sup><br>(yellow)                                     | or<br>or<br>Pbca<br>16            | (2000)<br>18.985(7)<br>33.197(7)<br>18.917(5)  | (2)04:21                                                                                               | CuCl <sub>3</sub> ON             | FC N O C                        | 2.396(3,40)<br>1.902(5,9)<br>1.934(7,6)<br>2.415(3,41) | 3.104(2,13)<br>O 109.5(9,1.2)<br>CI 79.7(10,3.0)              | CCC<br>CCC           | 85.9(2,1.6)<br>95.1(2,3.8)<br>116.4(1,7.5)<br>127.8(1,5.8)                  | 82        |
|                                                                                                                  |                                   |                                                |                                                                                                        |                                  |                                 |                                                        |                                                               | z<br>S               | (1.1,c)0.//1                                                                |           |

| 2011       |
|------------|
| January    |
| 23         |
| 14:40      |
| At:        |
| Downloaded |

|                                                                  |                              |                                     |                                  | CuCI <sub>3</sub> ON             | μ <sub>4</sub> Ο<br>imN<br>μCl                             | 1.903(5,13)<br>1.930(7,18)<br>2.419(3,59)            | 3.107(2,36)<br>O 109.5(11,1.7)<br>CI 79.7(10,3.0)                | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 85.8(2,2.0)<br>95.0(2,2.2)<br>117.0(1,8.4)<br>130.5(1,3.2)                 |    |
|------------------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------|----------------------------------|------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|----|
| Cl) <sub>6</sub> (Ph <sub>3</sub> PO) <sub>4</sub> ] ·<br>range) | с<br>F-43с<br>8              | Not given                           |                                  | CuCl <sub>3</sub> O <sub>2</sub> | Ph <sub>3</sub> PO<br>Ph <sub>3</sub> PO                   | 1.902(2)<br>1.95(1)<br>7 398(7)                      | 3.107(1)<br>O Not given<br>C1 80 8(1)                            | CLO C                                | 176.8(3,8)<br>90.0(1,5.1)                                                  | 62 |
| )%(dmppz)4                                                       | m<br>12/a<br>4               | 20.836(1)<br>11.161(1)<br>22.996(1) | 104.54(1)                        | CuCl <sub>3</sub> ON             | D N N D                                                    | 2.2.20(2)<br>1.909(4,4)<br>1.962(7,2)<br>2.412(3.87) | 0.109.0(1,65)<br>3.108(1,65)<br>0.109.0(4,3.4)<br>0.180.8(1,2.0) | CI,CI<br>O,N                         | 119.3(1,2.0)<br>176.1(2,3)                                                 | 83 |
| J)₀(Meim)₄                                                       | or<br>Pbca<br>16             | 18.946(1)<br>19.043(1)<br>33.256(2) |                                  | CuCl <sub>3</sub> ON             | HT NNO                                                     | 1.905(7,19)<br>1.939(9,28)<br>2.418(4,75)            | 3.110(3,36) <sup>d</sup><br>O 109.5(3,1.1)<br>Cl 80.1(1,7)       | C C C                                | 115.7(1,6.9)<br>126.3(1,7.9)<br>85.0(2,1.6)<br>95.1(3,4.0)                 | 84 |
| Cl)6(Ph3PO)6                                                     | с<br>Р-43т<br>1              | 12.22(2)                            |                                  | CuCl <sub>3</sub> O <sub>2</sub> | μ <sub>4</sub> 0<br>Ph <sub>3</sub> PO                     | 1.905(3)<br>1.89(2)<br>2.38(1)                       | 3.110(3)<br>Not given                                            | CÌO                                  | (2.2,c)c.//1<br>95.6(7)                                                    | 85 |
| Cl) <sub>6</sub> (Mein)₄] ·<br>IJCl (dark green)                 | or<br>Pca2 <sub>1</sub><br>4 | 14.637(1)<br>13.233(1)<br>26.490(2) |                                  | CuCl <sub>3</sub> ON             |                                                            | Not given                                            | 3.117(3,7) <sup>d</sup>                                          |                                      | Not given                                                                  | 84 |
| CI) <sub>6</sub> (hmt) <sub>4</sub>                              | m<br>A2/a<br>4               | 19.417(9)<br>9.788(6)<br>22.792(9)  | 116.08(3)                        | CuCl <sub>3</sub> ON             | $\begin{array}{c} \mu_4 O \\ hmt N \\ \mu C I \end{array}$ | 1.909(5,3)<br>2.001(8,3)<br>2.412(3,45)              | 3.117(2,29)<br>O 109.2(2,1.8)<br>CI 80.5(1,9)                    | C,C<br>C,N<br>C,N<br>C               | 119.1(1,4.9)<br>95.6(2,6)<br>84.3(2,3)<br>178.3(3,7)                       | 86 |
| CI)6(pi)4                                                        | tr<br>P-1<br>2               | 11.749(3)<br>11.807(2)<br>14.205(3) | 106.2(1)<br>115.5(1)<br>97.45(5) | CuCl <sub>3</sub> ON             | μ40<br>piN<br>μCl                                          | 1.91(1,5)<br>1.99(2,4)<br>2.416(6,43)                | 3.119(3,26)<br>O 109.3(5,3.0)<br>CI 80.4(2,1.0)                  |                                      | 115.5(3,6.4)<br>126.7(3,3.4)<br>85.0(6,2.3)<br>95.2(7,5.6)<br>175.1(6.2.4) | 87 |
| 44-0)(μ-Cl) <sub>6</sub> Cl₄] <sup>c</sup>                       | с<br>Р-43n<br>8              | 19.361(6)                           |                                  | CuCl4O                           | μ40<br>CI<br>μCI                                           | 1.921(2)<br>2.268(4)<br>2.398(4,33)                  | 3.137(3,1)<br>Not given                                          | a,a                                  | 119.12(15)                                                                 | 88 |

| Compound (colour)                                                            | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å) | $\substack{\alpha \ ()\\ \beta \ ()\\ \gamma \ () \end{pmatrix}}$ | Chromophore                      | Ċ                  | <i>ι−</i> Γ (Å)                  | $Cu-Cu(\dot{A})$<br>$Cu-L-Cu(\circ)$ | 7        | L-Cu-L (°)              | Ref. |
|------------------------------------------------------------------------------|------------------------------|-------------------------|-------------------------------------------------------------------|----------------------------------|--------------------|----------------------------------|--------------------------------------|----------|-------------------------|------|
|                                                                              | 2                            |                         |                                                                   | CuCl <sub>4</sub> O              |                    | 1.958(2)<br>2.203(4)<br>2.420(5) | 3.198(3)<br>Not given                | CÌCI     | 118.89(8)               |      |
| (Me4N)[Cu4(μ4-O)(μ-Cl)6Cl4] <sup>c</sup><br>(red)                            | с<br>Р.43n                   | 19.30(2)                |                                                                   | CuCl <sub>4</sub> O              | 040                | 1.92(1)                          | 3.14(1)<br>O 109 474 4)              | 0,CI     | 84.6(5,1.0)<br>177_0/7) | 89   |
| (551)                                                                        | 8                            |                         |                                                                   |                                  | σą                 | 2.41(2)                          | CI 81.3(9,1)                         | ต'ต      | 95.4(7,2.8)             |      |
|                                                                              |                              |                         |                                                                   | CuCl4O                           | $\mu_{4}O$         | 1.95(1)                          | 3.18(1)                              | 0.01     | 84.5(6)                 |      |
|                                                                              |                              |                         |                                                                   |                                  | ច                  | 2.17(2)                          | O 109.5(-)                           |          | 180.0(-)                |      |
|                                                                              |                              |                         |                                                                   |                                  | μCI                | 2.43(3)                          | CI 81.5(-)                           | CľC      | 95.5(8)                 |      |
| Et3NH3)4[Cu4(u2-O)(u-Cl)2C]4]                                                | Ш                            | (1)660.11               |                                                                   | CuClAO                           | 0,44               | 1.913(5.10)                      | 3.121(1.53)                          | 0.0      | 84 4(2.3.8)             | 06   |
| red)                                                                         | P2,/c                        | 9.744(1)                | 111.56(1)                                                         |                                  | 5<br>D             | 2.243(3.7)                       | O 109.4(2.3.3)                       |          | 177.5(2.1.7)            | 5    |
|                                                                              | 4                            | 36.977(2)               |                                                                   |                                  | μCI                | 2.361(3,26)                      | 80.4(1,9)                            | CľC      | 95.5(1,1.8)             |      |
|                                                                              |                              |                         |                                                                   |                                  |                    | 2.443(2,29)                      |                                      |          | 114.4(1,9.9)            |      |
|                                                                              |                              |                         |                                                                   |                                  |                    | 2.581(2,7)                       |                                      |          | 133.6(1,4.7)            |      |
| $Cu_4(\mu_4-O)(\mu-CI)_6(1,2-Me_2im)_4]$ .                                   | B                            | 22.582(5)               |                                                                   | CuCl <sub>3</sub> ON             | $\mu_4 O$          | 1.909(9,14)                      | 3.122(3,30)                          | 0,0      | 84.6(3,1.8)             | 16   |
| ).25H <sub>2</sub> O (not given)                                             | P21/c                        | 11.829(2)               | 128.46(2)                                                         |                                  | z                  | 1.945(4,6)                       | O 109.5(4,1.8)                       | N,O      | 178.0(4,2.6)            |      |
|                                                                              | 4                            | 16.114(4)               |                                                                   |                                  | μCI                | 2.416(5,50)                      | Cl 80.4(2,1.4)                       | ClCI     | 113.0(2,8.9)            |      |
|                                                                              |                              |                         |                                                                   |                                  |                    |                                  |                                      |          | 127.6(2,11.1)           |      |
|                                                                              |                              |                         |                                                                   |                                  |                    |                                  |                                      | CĽN      | 95.5(4,4.5)             |      |
| Cu4(μ4-O)(μ-Cl)6(Et3PO)4                                                     | £                            | 12.8971(26)             | 90.55(2)                                                          | CuCl <sub>3</sub> O <sub>2</sub> | 044                | 1.913(4,17)                      | 3.123(2,7)                           | D<br>D   | 119.22(16,10.49)        | 92   |
| red brown)                                                                   | R3c                          |                         |                                                                   |                                  | Et <sub>3</sub> PO | 1.934(6,2)                       | O 109.5(3,1.2)                       | 0'0      | 177.61(35,2.39)         |      |
|                                                                              | 7                            |                         |                                                                   |                                  | Ū,                 | 2.422(2,53)                      | CI 80.3(1,7)                         | 0,0      | 90.06(24,9.54)          |      |
| Cu <sub>4</sub> (μ <sub>4</sub> -O)(μ-Cl) <sub>6</sub> (ain) <sub>4</sub> ]. | E                            | 11.661(2)               |                                                                   | CuCl <sub>3</sub> ON             | $\mu_4 O$          | 1.919(5)                         | 3.132(-,72) <sup>d</sup>             | <u>ต</u> | 101.85(7)               | 93   |
| SEtac (brown)                                                                | P21/c                        | 22.415(7)               | 109.85(2)                                                         |                                  | ainN               | 1.996(7,20)                      | O 109.5(2,3.7)                       |          | 114.8(8,4.44)           |      |
|                                                                              | 4                            | 15.077(4)               |                                                                   |                                  | μCI                | 2.349(3,38)                      | CI 81.2(1,1.4)                       |          | 126.99(8,3.1)           |      |
|                                                                              |                              |                         |                                                                   |                                  |                    | 2.453(2,26)                      |                                      |          | 141.53(8)               |      |
|                                                                              |                              |                         |                                                                   |                                  |                    | 2.619(2)                         |                                      | CľO      | 84.2(1,3.1)             |      |
|                                                                              |                              |                         |                                                                   |                                  |                    |                                  |                                      | Z        | 05 0/7 4 61             |      |

|                                                                              |                    |           |            |                      |           |             |                           | N,O   | 177.7(2,3.5) |     |
|------------------------------------------------------------------------------|--------------------|-----------|------------|----------------------|-----------|-------------|---------------------------|-------|--------------|-----|
| Cu <sub>4</sub> (μ <sub>4</sub> -O)(μ-Cl) <sub>6</sub> (3-quin) <sub>4</sub> | Е                  | 11.877(4) |            | CuCl <sub>3</sub> ON | μ4O       | 1.919(5,6)  | 3.133(1,22)               | ClC   | 119.2(1,3.7) | 94  |
| (yellow)                                                                     | P2 <sub>1</sub> /c | 19.106(3) | 122.28(2)  |                      | quinN     | 2.025(7,7)  | O 109.5(2,8)              | 0,CI  | 84.8(2,1.1)  |     |
|                                                                              | 4                  | 21.975(5) |            |                      | μŪ        | 2.413(3,22) | Cl 80.98(8,47)            | N,CI  | 95.3(2,1.3)  |     |
|                                                                              |                    |           |            |                      |           |             |                           | 0,N   | 179.5(2,6)   |     |
| $Cu_4(\mu-O)(\mu-Br)_6(py)_4$                                                | m                  | 30.64(1)  |            | CuBr <sub>3</sub> ON | $\mu_4O$  | 1.92(1,1)   | 3.142(6,19) <sup>d</sup>  | 0,N   | 175.9(7,2.5) | 95  |
| (dark brown)                                                                 | C2/c               | 12.43(2)  | 129.56(20) |                      | Nvd       | 2.02(2,5)   | O 109.5(6,1.1)            | N,Br  | 93.9(5,6.2)  |     |
|                                                                              | ×                  | 20.17(1)  |            |                      | $\mu Br$  | 2.534(4,76) | CI 76.7(2,1.0)            | O,Br  | 86.6(4,1.4)  |     |
|                                                                              |                    |           |            |                      |           |             |                           | Br,Br | 111.8(2,7.0) |     |
|                                                                              |                    |           |            |                      |           |             |                           |       | 130.7(2,7.5) |     |
| $[Cu_4(\mu_4-O)(\mu-Br)_6(mor)_4]$ .                                         | E                  | 11.128(2) |            | CuBr <sub>3</sub> ON | $\mu_4 O$ | 1.933(8,23) | 3.155(2,12)               | Br,Br | 119.5(1,6.1) | 96  |
| 2H <sub>2</sub> O (black)                                                    | P2/b               | 13.356(2) |            |                      | morN      | 2.0(2,0)    | O 109.5(4,1.7)            | N,0   | 179.1(5)     |     |
|                                                                              | 7                  | 12.608(2) | 106.02(5)  |                      | μΒι       | 2.535(3,48) | CI 76.96(8,73)            |       | ,            |     |
| $[Cu_4(\mu_4-O)(\mu-pz)_2(dpm)_4]$                                           | E                  | 21.430(9) |            | CuO <sub>3</sub> N   | μ4O       | 1.930(6)    | 3.285(6,132) <sup>d</sup> | 0,0   | 82.9-92.5(6) | 96b |
| (blue)                                                                       | A2/a               | 24.70(8)  | 111.24(3)  |                      | 0mdb      | 1.930(6)    | 107.7(1,8.4)              |       |              |     |
|                                                                              | 4                  | 13.759(6) |            |                      | Nzdη      | 1.930(6)    |                           |       |              |     |

<sup>a</sup>Where more than one chemically equivalent distance or angle is present the mean value is tabulated. The first number in parenthesis is e.s.d., the second is maximum deviation from the mean value. <sup>b</sup>The chemical identity of coordination atom/ligand is specified in these columns. <sup>c</sup>There are two crystallographically independent molecules.



FIGURE 4 Structure of  $[Cu_4(\mu_4-OH)(bttt)]^{3+}$ .<sup>71</sup>

centers is bridged by a single chlorine<sup>72-94</sup> or bromine<sup>95,96</sup> atom. The structure of the orange complex,  $Cu_4(\mu_4-O)(\mu-Cl)(Et_2SO_4)$ ,<sup>73</sup> is shown in Figure 5 as an example. The coordination sphere about each copper(II) is trigonalbipyramidal, with three chlorine or bromine atoms in the equatorial plane. There are four types of core structural units,  $CuCl_3ON$ ,<sup>72,76,78,80,82-84, 86,87,91,93</sup>  $CuCl_3O_2$ ,<sup>73-75,77,79,81,85,92,94</sup>  $CuCl_4O^{88-90}$  and  $CuBr_3ON$ .<sup>95,96</sup> The Cu–Cu separation in these tetrahedral cores ranges from 3.093 to 3.155 Å (mean values), suggesting an absence of metal-metal bonding. The mean Cu–O–Cu bridge angle is 109.5(6.0)°. The mean Cu–Cl–Cu bridge angle of 80.5° is about 4.0° more open than that of a Cu–Br–Cu bridge (76,5°).

The mean values of both Cu-L (terminal) and Cu-L (bridge) bond distances increase with covalent radius of coordinated atoms (in parenthesis)



FIGURE 5 Structure of  $Cu_4(\mu_4-O)(\mu-Cl)(Et_2SO)_4$ .<sup>73</sup>

in the sequences: 1.96 Å (OL, 0.73 Å) < 1.97 Å (NL, 0.74 Å) < 2.24 Å (Cl, 0.99 Å) and 1.915 Å ( $\mu_4$ O) < 2.42 Å ( $\mu$ -Cl) < 2.535 Å ( $\mu$ -Br).

Most derivatives (12) are red-brown in color, but there are orange (5), green (4) and yellow (4) complexes. There are three derivatives<sup>82,88,89</sup> which contain two crystallographically independent tetramers, differing mostly by degree of distortion and provide other examples of distortion isomers.<sup>70</sup>

### 3.2 Cubane Type

The essentially green and blue compounds of this type are given in Table IIIA. There are over forty examples<sup>97-134</sup> which possess a central Cu<sub>4</sub>O<sub>4</sub> cubane-type structure. The structure of  $[Cu(\mu_3-deae)(NCO)]_4^{108}$  is shown in (Figure 6) as an example. Structures are reported in the order of increasing mean Cu-Cu separation. Copper(II) displays considerable flexibility in the cubic framework, with five-coordinate,<sup>97,98,100-110,112-121,124,125,131</sup>

|                                                                            | TABLE III                      | Crystallogra                         | phic and str                                                                                                       | uctural data for     | tetrameric                                                    | copper(II) cc                                                     | mpounds <sup>a</sup>                                       |                                 |                                                                                                                 |      |
|----------------------------------------------------------------------------|--------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|------|
| Compound (colour)                                                          | Cryst. cl.<br>space gr.<br>Z   | a (Å)<br>b (Å)<br>c (Å)              | $egin{array}{c} lpha \left( ^{ m c}  ight) \ eta \left( ^{ m c}  ight) \ \gamma \left( ^{ m c}  ight) \end{array}$ | Chromophore          | Cn                                                            | - <i>T</i> (Å)                                                    | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | T                               | - <i>Cu</i> - <i>L</i> (°)                                                                                      | Ref. |
| A: Cubane<br>[Cu(µ3-pte)Cl]4 (not given)                                   | 14<br>14                       | 14.740(5)<br>8.028(1)                |                                                                                                                    | CuO <sub>3</sub> SCI | $\mu_3 O^b$                                                   | 1.961(4,19)<br>2.422(4)<br>2.329(2)<br>2.205(2)                   | 2.964(1)<br>3.340(1)<br>3.089<br>98.4(1,6)                 | 0.0 <sup>b</sup><br>0,S<br>0,Cl | 80.9(1,2)<br>84.9(1) <sup>6</sup><br>95.1(1)<br>165.8(1)<br>98.0(1)<br>115.0(1)                                 | 67   |
| [Cu(µ3-OMe)(tcp)(McOH)]4<br>(light green)                                  | т<br>Р2 <sub>1</sub> /b<br>16  | 18.014(9)<br>14.795(8)<br>18.083(11) | 94.01(15)                                                                                                          | CuOs                 | ο <sub>εμ</sub> Ο<br>tepO                                     | 1.95(-,6)<br>2.31(,25)<br>2.06(-,2)                               | 2.964(-)<br>3.187(-)<br>3.104                              | S,CI<br>0,0                     | 163.6(1)<br>96.03(6)<br>86.1(-,6.3)<br>95.5(-,4.2)<br>169.5(-,5.7)                                              | 98   |
| [Cu(µ <sub>3</sub> -me)(hfacac)]₄<br>(dark green)                          | а<br>С2/с<br>4                 | 17.046(5)<br>17.211(5)<br>17.634(3)  | 93.50(2)                                                                                                           | CuO <sub>6</sub>     | $\begin{array}{c} MeU \\ \mu_3 O \\ hfacacO \\ O \end{array}$ | 2.06(-,2)<br>1.942(6,7)<br>2.424(6,22)<br>1.956(6,20)<br>2.560(8) | 84.8(-,6.1)<br>2.936(2)<br>3.234(2)<br>3.108<br>Not given  | 0'0                             | 77.6(3,3.4) <sup>c</sup><br>83.4(2,5.6) <sup>d</sup><br>93.8(3,2.0)<br>106.8(3,5.7)                             | 66   |
| α-[Cu(μ <sub>3</sub> -C,H <sub>11</sub> NO <sub>2</sub> )]4<br>(not given) | tg<br>P42,c<br>8               | 14.46(2)<br>7.63(2)                  |                                                                                                                    | CuO4N                | $\mu_3 O$<br>0                                                | 2.672(8)<br>1.99(2,1)<br>2.32(2)<br>1.91(2)                       | 3.006(8)<br>3.259(8)<br>3.133<br>97.8(8)                   | 0,0<br>0,N                      | 162.8(3,10.0)<br>81.5(8,3)<br>98.4(9)<br>86.0(10 <sup>c</sup><br>95.0(11) <sup>d</sup><br>95.0(11) <sup>d</sup> | 100  |
| [Cu(µ3-ipte)Cl]4<br>(not given)                                            | tg<br>P.42 <sub>1</sub> c<br>2 | 13.170(4)<br>9.872(2)                |                                                                                                                    | CuO <sub>3</sub> SCI | μ <sub>3</sub> Ο<br>S                                         | 1.964(5,25)<br>2.343(5)<br>2.321(3)                               | 3.148(1)<br>3.191(1)<br>3.162                              | 0,0<br>0,S                      | 153.1(8)<br>75.0(2)<br>83.8(2,1.1)<br>85.3(2) <sup>c</sup>                                                      | 76   |

-(II) o . al data far nd of m a hin TARIFIII Crystalloar

|                                                                                                   |                 |                                     |                                  |                                 | 0                            | 2.218(3)                                             | 94.4(2,1.6)<br>106.5(2)                                  | 0,CI 9                            | 12.2(1)<br>67.0(2)<br>8.0(2,2)<br>77.3(2)                                                             |     |
|---------------------------------------------------------------------------------------------------|-----------------|-------------------------------------|----------------------------------|---------------------------------|------------------------------|------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------|-----|
| [Cu(µ <sub>3</sub> -OEt)(tftbd)]4<br>(not given)                                                  | or<br>Fddd<br>8 | 14.071(5)<br>14.294(9)<br>49.93(3)  |                                  | CuOs                            | μ <sub>3</sub> Ο<br>Ο        | 1.946(6,1)<br>2.411(7)<br>1.927(6,8)                 | 2.977(2)<br>3.281(2)<br>3.173                            | 0,0<br>0,0<br>1 9 8 9             | 2.0(1)<br>1.7(3,1.8) <sup>d</sup><br>4.4(3,2.9)<br>01.6(3)                                            | 101 |
| [Cu(µ-dbae)(NCS)]₄<br>(not given)                                                                 | tr<br>P-I<br>2  | 12.34(2)<br>13.53(2)<br>20.33(3)    | 73.8(1)<br>107.6(1)<br>109.0(1)  | CuO <sub>3</sub> N <sub>2</sub> | μ <sub>3</sub> 0<br>SCN<br>N | 2.01(1,10)<br>2.25(1,4)<br>1.91(2,2)<br>2.05(2,4)    | 97.7(2,2.1)<br>3.034(4)<br>3.173<br>3.173<br>98.6(6,4.7) | 0,0 7<br>0,0 8<br>0,0 8<br>9<br>9 | 7.28(3,1.9)<br>8.6(4,8)<br>1.8(5,1.5)<br>5.7(7,1.1) <sup>e</sup><br>7.1(7,3.4)<br>30.9(6,8.9)         | 102 |
| [Cu(µ3-OMe)(hfacac)(thf)]4<br>(dark green)                                                        | or<br>Fddd<br>8 | 14.00(1)<br>27.75(2)<br>29.16(1)    |                                  | CuO,                            | $\mu_3 O$<br>hfacacO<br>thfO | 1.937(3,8)<br>2.441(3)<br>1.944(3,10)<br>2.547(4)    | 2.932(3)<br>3.318(3)<br>3.177<br>97.6(1,1.2)             | Z 0<br>Z 0<br>Z 0                 | 50.3(6,6.9)<br>76.7(6,3.1)<br>6.5(8,2.2)<br>2.5(1,3.2)<br>2.5(1,6.5)<br>03.2(1)<br>03.2(1)<br>42.2(1) | 66  |
| [Cu(µ <sub>3</sub> -C <sub>8</sub> H <sub>11</sub> NO <sub>3</sub> )] <sub>4</sub><br>(not given) | tr<br>P-1<br>2  | 12.330(2)<br>13.766(1)<br>11.109(3) | 97.44(2)<br>92.05(2)<br>85.09(2) | CuO4N                           | Ο <sup>επ</sup> Ο 2          | 1.952(4,31)<br>2.403(4,74)<br>Not given<br>Not given | 3.092(1)<br>3.337(1)<br>3.178<br>105 372 81              | - ž                               | /3.0(1,8)<br>ot given                                                                                 | 103 |
| [Cu(µ₃-dpae)(NCO)]₄<br>(light green)                                                              | or<br>Pnna<br>4 | 12.83(1)<br>19.03(2)<br>19.28(2)    |                                  | CuO <sub>3</sub> N <sub>2</sub> | Οεπ                          | 1.923(8,10)<br>2.154(8,4)<br>2.229(8,15)             | 3.155(4)<br>3.208(2)<br>3.182                            | 0 0 0<br>0 0 0<br>1 0             | 0.4(4,3.7)<br>1.7(6,6.3)<br>39.0(4,2.0)                                                               | 104 |

| TABLE III (Continued)                                                   |                                  |                         |                         |                                 |            |                              |                                                            |            |                                      |      |
|-------------------------------------------------------------------------|----------------------------------|-------------------------|-------------------------|---------------------------------|------------|------------------------------|------------------------------------------------------------|------------|--------------------------------------|------|
| Compound (colour)                                                       | Cryst. cl.<br>space gr.<br>Z     | a (Ý)<br>6 (Ý)<br>6 (Ý) | α (°)<br>β (°)<br>γ (°) | Chromophore                     | Cr         | - <i>T</i> (Å)               | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | 1          | -Cu-L (°)                            | Ref. |
|                                                                         |                                  |                         |                         |                                 | z z<br>ocy | 1.862(14,14)<br>2.072(13.13) | 98.8(2,5.7)                                                | Z          | 174.0(5,5)<br>98.7(6.0)              |      |
| β [Cu(μ <sub>3</sub> -eia)]₄ · 2C <sub>6</sub> H <sub>6</sub><br>(blue) | ъ.<br>Р-1                        | 16.72(2)<br>12.19(1)    | 95.3(1)<br>95.0(1)      | CuO4N                           | η3Ο        | 1.948(8,41)<br>2.408(8,97)   | 3.064(2)<br>3.311(2)                                       | 0 0<br>0 0 | 90.1(-,3.5)<br>84.7(-) <sup>c</sup>  | 105  |
| ~                                                                       | 4                                | 11.68(1)                | 107.6(1)                |                                 | Z          | 1.927(7,11)                  | 3.183<br>97.9(29.7.6)                                      |            | 95.1(-) <sup>d</sup>                 |      |
| $[Cu(\mu_3-deae)Cl]_4$                                                  | tg                               | 11.334(3)               |                         | CuO <sub>3</sub> NCI            | $\mu_3 O$  | 1.966(6,31)                  | 2.931(2)                                                   | 0,0        | 81.1(2,2)                            | 106  |
| (dark green)                                                            | P4 <sub>1</sub> 2 <sub>1</sub> 2 | (0/10E EC               |                         |                                 | 2          | 2.472(6,49)                  | 3.450(2)                                                   |            | 85.1 (3,6) <sup>7</sup><br>06 0/7 3) |      |
|                                                                         | 10                               | (0)16/.17               |                         |                                 | Z Ū        | 2.230(3,5)                   | 96.7(3,1.0)                                                | J U<br>D Z | 97.1(2,6)                            |      |
| [Cu(µ <sub>3</sub> -dbae)(NCO)]₄                                        | ц                                | 12.14(1)                | 72.2(1)                 | CuO <sub>3</sub> N <sub>2</sub> | $\mu_{3}O$ | 2.02(2,12)                   | 3.051(4)                                                   | 0,0        | 78.6(9,7)                            | 102  |
| (not given)                                                             | P-1                              | 13.09(1)                | 103.5(1)                |                                 |            | 2.27(1,4)                    | 3.265(4)                                                   |            | 81.9(6,1.7)                          |      |
|                                                                         | 2                                | 16.69(2)                | 106.5(1)                |                                 | ocn        | 1.87(2,5)                    | 3.189                                                      | N,O        | 85.5(7,2.2)                          |      |
|                                                                         |                                  |                         |                         |                                 | Z          | 2.08(2,2)                    | 98.5(7,5.1)                                                |            | 96.6(8,5.2)                          |      |
|                                                                         |                                  |                         |                         |                                 |            |                              |                                                            |            | 133.6(7,10.8)                        |      |
|                                                                         |                                  |                         |                         |                                 |            |                              |                                                            |            | 152.2(6,2.6)<br>175.6(8.3.0)         |      |
|                                                                         |                                  |                         |                         |                                 |            |                              |                                                            | Z<br>Z     | 97.1(9.3.4)                          |      |
| $[Cu(\mu_3-deae)(NCO)]_4 \cdot CHCl_3$                                  | E                                | 12.861(3)               |                         | CuO <sub>3</sub> N <sub>2</sub> | $\mu_3O$   | 1.927(6,3)                   | 3.154(3) <sup>e</sup>                                      |            | Not given                            | 107  |
| (dark green)                                                            | P2 <sub>1</sub> /c               | 14.039(3)               | 100.39(1)               |                                 |            | 2.170(6,14)<br>2.20666.10)   | 3.238(3)<br>3.101                                          |            |                                      |      |
|                                                                         | r                                | (c)0C7.47               |                         |                                 | NCO        | 1 903/11 14)                 | 04 0/0 5 51                                                |            |                                      |      |
|                                                                         |                                  |                         |                         |                                 | Z          | 2.043(9,25)                  | (a                                                         |            |                                      |      |
| $[Cu(\mu_3 - deae)(NCO)]_4$                                             | Ħ                                | 13.478(3)               | 84.020(5)               | CuO <sub>3</sub> N <sub>2</sub> | $\mu_3 O$  | 1.925(4,8)                   | 3.153(1)                                                   | 0,N        | 85.3(2,1.0) <sup>c</sup>             | 108  |
| (dark green) (form B)                                                   | P-I                              | 12.873(3)               | 80.263(5)               |                                 |            | 2.170(5,22)                  | 3.254(1)                                                   |            | 175.5(3,1.6)                         |      |
|                                                                         | 2                                | 11.542(3)               | 86.863(5)               |                                 |            | 2.215(4,5)                   | 3.194                                                      | Z<br>Z     | 97.5(3,1.2)                          |      |
|                                                                         |                                  |                         |                         |                                 | OCN        | 1.896(8,14)                  | 98.9(2,6.7)                                                |            |                                      |      |
|                                                                         |                                  |                         |                         |                                 | Z          | 2.046(7,31)                  |                                                            |            |                                      |      |

| [Cu(µ <sub>3</sub> -deae)(NCO)] <sub>4</sub><br>(light green)    | tg<br>I42d         | 17.85(1)   |           | CuO <sub>3</sub> N <sub>2</sub> | μ <sub>3</sub> Ο | 1.936(6)<br>2.113(6) | 3.193(2)<br>3.194(2) | 0 V<br>O Z | 79.9(3,3.6)<br>98.1(4)   | 109 |
|------------------------------------------------------------------|--------------------|------------|-----------|---------------------------------|------------------|----------------------|----------------------|------------|--------------------------|-----|
| 8                                                                | 4                  | 11.92(1)   |           |                                 |                  | 2.243(6)             | 3.194                | N,O        | 85.0(3) <sup>c</sup>     |     |
|                                                                  |                    |            |           |                                 | OCN              | 1.903(9)             | 99.2(2,5.0)          |            | 96.9(3)                  |     |
|                                                                  |                    |            |           |                                 | z                | 2.066(8)             |                      |            | 139.2(3,3.1)             |     |
|                                                                  |                    |            |           |                                 |                  |                      |                      |            | 174.0(3)                 |     |
| $[Cu(\mu_3-me)(bzac)]_4$                                         | Ħ                  | 20.062(2)  | 69.156(8) | CuOs                            | $\mu_3O$         | 1.955(5,22)          | 3.020°               | 0,0        | 80.5(1,2.3)              | 110 |
| (green blue)                                                     | P-1                | 14.970(1)  | 74.597(9) |                                 |                  | 2.346(5,1)           | 3.436                |            | 91.9(1,6.5) <sup>d</sup> |     |
|                                                                  | 2                  | 10.658(2)  | 65.637(8) |                                 |                  | 2.526(5,7)           | 3.195                |            | 103.6(1,1.6)             |     |
|                                                                  |                    |            |           |                                 | bzacO            | 1.920(6,8)           | 97.5(2,6.3)          |            | 173.83(10)               |     |
| $[Cu_4(\mu_3-OH)_4(\mu-SO_3CF_3)_2(tpa)_4]$                      | Е                  | 18.848(7)  |           | CuO4N <sub>2</sub>              | $\mu_3O$         | 1.967(7,21)          | 2.967(2)             | 0,0        | 81.1(4,2.1)              | 111 |
| SO <sub>3</sub> CF <sub>3</sub> · Me <sub>2</sub> CO (deep blue) | P21/n              | 13.804(5)  | 99.29(3)  |                                 |                  | 2.387(7,8)           | 3.371(2)             |            | 90.5(4,4.1)              |     |
|                                                                  | 4                  | 29.491(10) |           |                                 |                  | 2.475(7)             | 3.207                |            | 168.3(3,1.4)             |     |
|                                                                  |                    |            |           |                                 | 01<br>I          | 2.531(10,45)         | 98.2(4,2.5)          | Z,Z        | 85.1(2,3)                |     |
|                                                                  |                    |            |           |                                 |                  | 2.682(9)             |                      | 0,N        | 89.5(3,4.9)              |     |
|                                                                  |                    |            |           |                                 | tpaN             | 2.010(6,18)          |                      |            | 103.8(2,3)               |     |
| $[Cu(\mu_3-amp)Cl]_4$ (green)                                    | tg                 | 12.604(8)  |           | CuO <sub>3</sub> NCI            | $\mu_{3}O$       | 1.965(7,6)           | 3.036(2)             | 0'0        | 81.8(3,3.1)              | 112 |
|                                                                  | $P4_2/n$           |            |           |                                 |                  | 2.461(9)             | 3.302(2)             | Ū<br>O     | 101.3(2,1.3)             |     |
|                                                                  | 2                  | 8.998(3)   |           |                                 | Z                | 1.984(9)             | 3.213                |            | 174.0(3)                 |     |
|                                                                  |                    |            |           |                                 | U                | 2.230(3)             | 97.6(3,3.6)          | 0,N        | 81.1(3) <sup>6</sup>     |     |
|                                                                  |                    |            |           |                                 |                  |                      |                      |            | 98.8(4)                  |     |
|                                                                  |                    |            |           |                                 |                  |                      |                      |            | 159.3(3)                 |     |
|                                                                  |                    |            |           |                                 |                  |                      |                      | C,N        | 99.6(3)                  |     |
| $[Cu(\mu_3-amp)Br]_4$ (light green)                              | 1g                 | 12.954(13) |           | CuO <sub>3</sub> NBr            |                  | Not given            | Not given            |            | Not given                | 112 |
|                                                                  | $P4_2/n$           |            |           |                                 |                  |                      |                      |            |                          |     |
|                                                                  | 7                  | 9.248(6)   |           |                                 | ¢                | 100 F/0L0 F          |                      | (          |                          |     |
| $[Cu(\mu_3 - C_{16}H_{16}N_2O_3)]_4$                             | 1g                 | 18.193(4)  |           | CuO4N                           | μ3Ο              | 1.9/8(4,20)          | 3.124(1)             | 0,0        | (0.4(2)                  | 113 |
| 9MeOH (dark green)                                               | P4 <sub>2</sub> /n |            |           |                                 |                  | 2.475(4)             | 3.412(2)             |            | 105.9(2)                 |     |
|                                                                  | 7                  | 12.615(4)  |           |                                 | 0                | 1.884(5)             | 3.220                |            | 173.1(2)                 |     |
|                                                                  |                    |            |           |                                 | Z                | 1.924(6)             | 93.9(2,5.1)          | CI,N       | 82.4(2,1.4) <sup>c</sup> |     |

| Compound (colour)                                 | Cryst. cl.<br>space gr.<br>Z | a (ỷ)<br>c (ų)<br>c (ų)                 | $egin{array}{c} lpha \left( ^{\circ}  ight) \ eta \left( ^{\circ}  ight) \ \gamma \left( ^{\circ}  ight) \end{array} \end{array}$ | Chromophore          | Ğ                     | - <i>L</i> (Å)                              | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | 7            | ,-Cu−L (°)                                                              | Ref. |
|---------------------------------------------------|------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|---------------------------------------------|------------------------------------------------------------|--------------|-------------------------------------------------------------------------|------|
|                                                   |                              |                                         |                                                                                                                                   |                      |                       |                                             | 104.4(2)                                                   |              | 93.2(2) <sup>d</sup><br>109.7(2)<br>169.5(2)                            |      |
| [Cu(µ₃-dpae)Cl]₄ (green)                          | or<br>Pbcn<br>8              | 15.965(4)<br>14.941(1)<br>19.305(2)     |                                                                                                                                   | CuO <sub>3</sub> NCI | $\mu_3 O$             | 1.955(13,8)<br>2.158(12,18)<br>2.236(14,24) | 3.190(5)<br>3.238(5)<br>3.221                              | 0,0<br>0,N   | 80.5(5,3.9)<br>84.8(6) <sup>c</sup><br>87.0(6)                          | 114  |
|                                                   |                              | r.                                      |                                                                                                                                   |                      | ΖŪ                    | 2.029(20,4)<br>2.228(6,8)                   | 98.7(5,5.6)                                                | o,Cj         | 96.3(6,1.0)<br>94.7(3,1.0)                                              |      |
| $[Cu(\mu_3 - tde)Cl]_4$ (green)                   | C2/c                         | 20.836(3)<br>9.963(2)                   | 122.57(2)                                                                                                                         | CuO <sub>3</sub> CIS | μ3Ο                   | 1.963(7,29)<br>2.440(8,9)                   | 3.158(2)<br>3.364(2)                                       | s,ci<br>o,ci | 92.3(1,0)<br>94.6(2,2.3)                                                | 115  |
|                                                   | 4                            | 17.793(3)                               |                                                                                                                                   |                      | 0 s                   | 2.280(3,3)<br>2.336(3,6)                    | 3.230<br>95.0(3,3.7)                                       | 0,S          | 173.8(2)<br>83.2(2,3.1) <sup>c</sup>                                    |      |
|                                                   |                              |                                         |                                                                                                                                   |                      |                       |                                             | 107.6(3,1)                                                 | 0,0          | $109.1(2,1.1)^{-}$<br>170.3(2,1)<br>73.8(3,1)<br>88.2(3,8.1)            |      |
| [Cu(µ3-ipe)(acac)]4 (blue)                        | т<br>С2/с<br>8               | 24.432(4)<br>10.771(5)<br>21.300(4)     | 115.98(2)                                                                                                                         | CuO5                 | $\mu_3 O$ acac $O$    | 1.948(3,13)<br>2.463(3,8)<br>1.910(3,11)    | 2.9970(6)<br>3.3396(9)<br>3.2347                           | 0,0          | 166.9(3,1.0)<br>81.6(1,2.5)<br>94.2(1,4.7) <sup>d</sup><br>101.6(1,1.6) | 116  |
| [Cu(µ <sub>3</sub> -dbae)Cl] <sub>4</sub> (green) | e P-I                        | 15,563(10)<br>16.280(11)<br>11.6.280(8) | 93.49(10)<br>100.32(10)                                                                                                           | CuO3NCI              | μ <sub>3</sub> Ο<br>Ν | 1.972(9,42)<br>2.424(9,66)<br>2.654(11,41)  | 3.128(2)<br>3.128(2)<br>3.417(2)<br>2.240                  | CLO          | 95.3(3,6.0)<br>172.5(3,5.0)<br>172.5(3,5.0)                             | 117  |
|                                                   | 0                            | (0)600.11                               | (01)10.211                                                                                                                        |                      | Z D                   | 2.234(4,9)                                  | 90.9(3,10)<br>90.9(3,10)<br>104.0(4.4.2)                   | N N<br>O     | 84.5(5,1.2) <sup>c</sup><br>128.9(4.5.1)                                |      |
|                                                   |                              |                                         |                                                                                                                                   |                      |                       |                                             |                                                            | 0,0          | 152.4(4,4.4)<br>79.4(3,6.7)                                             |      |

| [Cu(µ <sub>3</sub> -C <sub>16</sub> H <sub>14</sub> N <sub>2</sub> O <sub>3</sub> )] <sub>4</sub> ·<br>9MeOH (dark green) | m<br>12/c                        | 27.062(5)<br>25.062(5) | 92.39(1)   | CuO <sub>4</sub> N   | $\mu_{3}O$ | 1.983(5,66)<br>2.360(5,33) | 3.021(1)<br>3.492(2) | 0,0     | 75.7(2,2.9)<br>86.2(3.7.0)  | 118 |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|------------|----------------------|------------|----------------------------|----------------------|---------|-----------------------------|-----|
|                                                                                                                           | 80                               | 26.390(5)              |            |                      | 0          | 2.631(6,59)<br>1.890(6.8)  | 3.254<br>89.9(1.3.5) |         | 93.9(4,2.1)<br>109.9(4,7.5) |     |
|                                                                                                                           |                                  |                        |            |                      | Z          | 1.927(7,12)                | 104.1(1,6.8)         |         | 170.4(4,7.0)                |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      | ν,<br>Ο | 84.0(4,1.4) <sup>c</sup>    |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      |         | 93.2(4,3) <sup>d</sup>      |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      |         | 108.6(4,6.4)                |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      |         | 169.7(4,7.0)                |     |
| $[Cu(\mu_3-dbae)Br]_4$ (green)                                                                                            | tr                               | 15.539(10)             | 94.58(10)  | CuO <sub>3</sub> NBr | $\mu_{3}O$ | 1.963(10.42)               | 3.134(3)             | Br,O    | 94.8(3,5.4)                 | 117 |
|                                                                                                                           | P-1                              | 16.452(11)             | 100.65(10) |                      |            | 2.480(10,85)               | 3.477(3)             |         | 171.1(3.5.5)                |     |
|                                                                                                                           | 8                                | 11.766(8)              | 111.67(10) |                      | Z          | 2.066(13,8)                | 3.268                | Br,N    | 97.3(4,1.4)                 |     |
|                                                                                                                           |                                  |                        |            |                      | Br         | 2.382(3,13)                | 90.7(4,1.8)          | 0,N     | 84.7(5,1.4) <sup>c</sup>    |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            | 104.6(5,6.5)         |         | 127.2(5,4.0)                |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      |         | 155.1(5,3.4)                |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      | 0,0     | 78.9(4,8.1)                 |     |
| [Cu( $\mu_3$ -deae)Cl] <sub>4</sub> (green)                                                                               | tg                               | 11.342(4)              |            | CuO <sub>3</sub> NCI | μ3Ο        | 1.971(4,24)                | 2.935(-)             | 0,0     | 79.2(3,3.1)                 | 119 |
|                                                                                                                           | P4 <sub>1</sub> 2 <sub>1</sub> 2 |                        |            |                      |            | 2.463(7,48)                | 3.459(–)             | 0,C     | 95.2(3,1.1)                 |     |
|                                                                                                                           | 4                                | 27.861(11)             |            |                      | z          | 2.076(9,26)                | 3.274                |         | 102.8(3,1)                  |     |
|                                                                                                                           |                                  |                        |            |                      | Ū          | 2.236(3,14)                | 99.7(3,4.4)          |         | 175.5(9,1.4)                |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      | Ω,Ω     | 85.7(3,5) <sup>c</sup>      |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      |         | 116.3(3,4.6)                |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      |         | 157.8(3,3.9)                |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      | C,N     | 97.5(3,7)                   |     |
| $[Cu(\mu_3-C_9H_9NO_2)]_4$ (green)                                                                                        | tg                               | 13.967(7)              |            | CuO <sub>4</sub> N   | 064        | 1.960(4,7)                 | 3.155(-)             | 0,N     | 84.9(3) <sup>c</sup>        | 120 |
|                                                                                                                           | $P4_2/n$                         |                        |            |                      |            | 2.421(4)                   | 3.343(-)             |         | 93.7(3) <sup>d</sup>        |     |
|                                                                                                                           | ×                                | 9.726(6)               |            |                      | 0          | 1.894(5)                   | 3.280                |         | 115.7(3)                    |     |
|                                                                                                                           |                                  | ,                      |            |                      | Z          | (7)818(7)                  | 99.5(3,7.8)          |         | 164.9(3)                    |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      | 0,0     | 74.0(3)                     |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      |         | 83.0(3,2.5)                 |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      |         | 97.3(3,9)                   |     |
|                                                                                                                           |                                  |                        |            |                      |            |                            |                      |         | 177.3(3)                    |     |

| Compound (colour)                                                                                                                                         | Cryst. cl.<br>space gr.<br>Z                | a (ỷ)<br>6 (ỷ)<br>c (ỷ)               | $egin{array}{c} lpha \left( \circ  ight) \\ eta \left( \circ  ight) \\ \gamma \left( \circ  ight) \end{array} \end{array}$ | Chromophore                               | Ğ                                                                            | - <i>L</i> (Å)                                                                                                       | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | Г                                       | -Cu-L (°)                                                                                                                                                                                                                                      | Ref. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| [Cu(μ <sub>3</sub> -deæ)Br]₄· 4CCl₄<br>(light green)                                                                                                      | tg<br>141/a<br>4                            | 19.47(2)<br>15.78(1)                  |                                                                                                                            | CuO <sub>3</sub> NBr                      | O Z Z                                                                        | 1.953(5,29)<br>2.524(5)<br>2.052(8)<br>2.390(2)                                                                      | 3.176(2)<br>3.523(2)<br>3.291<br>8.8(3)<br>106.5(3,2.4)    | 0,0<br>0 0,Br<br>N Br                   | 78.1(3,8.6)<br>85.1(3) <sup>6</sup><br>126.8(3)<br>156.4(3)<br>93.9(2,18)<br>166.5(2)<br>166.5(2)<br>97.6(7)                                                                                                                                   | 121  |
| [Cu(μ <sub>3</sub> -apae)(μ-NO <sub>3</sub> )]₄ · 2H <sub>2</sub> O <sup>¢</sup><br>(not given)                                                           | m<br>C2/c<br>8                              | 27.312(15)<br>20.936(13)<br>17.510(9) | 128.82(3)                                                                                                                  | CuO4N2                                    | 0 <sup>εη</sup><br>Ν                                                         | 1.964(9,36)<br>2.594(13,39)<br>2.02(1,4)<br>7.647 11)                                                                | 3.224(3)<br>3.443(2)<br>3.298<br>98 9/5 13 5)              | 0,0                                     | 71.6(4,1.2)<br>84.8(4,3.5)                                                                                                                                                                                                                     | 122  |
| [Cu <sub>4</sub> (µ <sub>3</sub> -s)(µ-NO <sub>3</sub> )(NO <sub>3</sub> )(EtO) ·<br>(NO <sub>3</sub> ) <sub>2</sub> · 3EtOH · 2H <sub>2</sub> O (purple) | or<br>P2 <sub>1</sub> 2 <sub>1</sub> 2<br>4 | 28.663(9)<br>18.599(4)<br>15.509(8)   |                                                                                                                            | CuO4N2 (×1)<br>CuO4N2 (×1)<br>CuO4N2 (×2) | μ <sub>3</sub> Ο<br>μ <sub>3</sub> Ο<br>μ <sub>3</sub> Ο<br>μ <sub>3</sub> Ο | 1.96(1,1)<br>2.65(2)<br>1.99(2,0)<br>2.93(2)<br>2.93(2)<br>2.93(1,1)<br>2.74(1,1)<br>2.60(2,1)<br>2.58(2)<br>2.58(2) | 3.069(4)<br>3.732(4)<br>3.306<br>103.6(7,2.0)              | 0,0 0,0 N,0 N,0 0,0 0,0 0,0 0,0 0,0 0,0 | 76.7(16,8)<br>89.7(6,2.3)<br>153.7(5)<br>72.1(7)<br>92.9(7,1.7)<br>92.9(7,1.7)<br>1104.4(7)<br>1104.4(6)<br>91.6(7,3.3)<br>90.3(7,1.5)<br>90.3(7,1.5)<br>90.3(7,1.5)<br>93.7(8,1.2)<br>1166.7(7,3.2)<br>93.7(8,1.2)<br>106.7(7,3.2)<br>98.6(6) | 123  |
|                                                                                                                                                           |                                             |                                       |                                                                                                                            |                                           |                                                                              | 2.76(1,2)                                                                                                            |                                                            |                                         | 86.0(7,6.5)                                                                                                                                                                                                                                    |      |

TABLE III (Continued)

|                                                                                                           |                    |            |           |                                 | Z         | 1.98(2,5)    |              |         | 157.5(6,4.0)           |     |
|-----------------------------------------------------------------------------------------------------------|--------------------|------------|-----------|---------------------------------|-----------|--------------|--------------|---------|------------------------|-----|
|                                                                                                           |                    |            |           |                                 | 00201     | 2.56(2)      |              | Z<br>O  | 71.0(7,3)              |     |
|                                                                                                           |                    |            |           |                                 |           | 2.76(2)      |              |         | 92.6(8)                |     |
|                                                                                                           |                    |            |           |                                 |           |              |              |         | 112.1(7,3.7)           |     |
|                                                                                                           |                    |            |           |                                 |           |              |              | Z,Z     | 99.0(8,4)              |     |
| $[Cu(\mu_3-apae)]_4Br_4 \cdot 3H_2O$ (blue)                                                               | Е                  | 18.648(8)  |           | CuO <sub>3</sub> N <sub>2</sub> | $\mu_3 O$ | 1.962(7,14)  | 3.186(2)     | 0,Br    | 95.4(2,5.8)            | 124 |
|                                                                                                           | P2 <sub>1</sub> /n | 22.013(8)  | 90.08(4)  |                                 |           | 2.583(7,62)  | 3.555(2)     |         | 166.0(2,1.3)           |     |
|                                                                                                           | 4                  | 9.237(5)   |           |                                 | Z         | 2.008(10,35) | 3.307        | 0,0     | 79.6(3,9.1)            |     |
|                                                                                                           |                    |            |           |                                 |           |              | 88.3(3,1.1)  | 0,N     | 91.9(3,7.8)            |     |
|                                                                                                           |                    |            |           |                                 |           |              | 105.1(3,6.8) |         | 118.5(3,1.9)           |     |
|                                                                                                           |                    |            |           |                                 |           |              |              |         | 170.3(4,6.4)           |     |
|                                                                                                           |                    |            |           |                                 |           |              |              | N,Br    | 81.9(3,6.5)            |     |
|                                                                                                           |                    |            |           |                                 |           |              |              | Z,Z     | 94.4(4,7) <sup>d</sup> |     |
| $[Cu(\mu_3 - C_{17}H_{18}N_2O_3)]_4$ .                                                                    | ţĝ                 | 17.991(4)  |           | CuO4N                           | $\mu_3O$  | 1.964(4,22)  | 3.258(1)     | 0,0     | 70.7(2)                | 113 |
| 8EtOH (dark green)                                                                                        | $P4_2/n$           |            |           |                                 |           | 2.749(4)     | 3.412(2)     |         | 91.8(2,7.5)            |     |
|                                                                                                           | 7                  | 14.296(4)  |           |                                 | 0         | 1.899(4)     | 3.309        |         | 175.6(3)               |     |
|                                                                                                           |                    |            |           |                                 | Z         | 1.937(5)     | 90.3(2,4.2)  | ν,<br>Ο | 83.8(2) <sup>c</sup>   |     |
|                                                                                                           |                    |            |           |                                 |           |              | 112.0(2)     |         | 92.2(2) <sup>d</sup>   |     |
|                                                                                                           |                    |            |           |                                 |           |              |              |         | 118.4(2)               |     |
|                                                                                                           |                    |            |           |                                 |           |              |              |         | 168.6(2)               |     |
| [Cu(μ <sub>3</sub> -C <sub>17</sub> H <sub>18</sub> N <sub>2</sub> O <sub>3</sub> )] <sub>4</sub> · 8MeOH | tg                 | 17.226(4)  |           | CuO <sub>4</sub> N              | $\mu_3O$  | 1.961(4,16)  | 3.259(1)     | 0,0     | 70.5(2)                | 125 |
| (dark green)                                                                                              | $P4_2/n$           |            |           |                                 |           | 2.734(4)     | 3.481(1)     |         | 87.3(2,2.8)            |     |
|                                                                                                           | 7                  | 14.667(3)  |           |                                 | 0         | 1.880(4)     | 3.333        |         | 95.8(2,2.6)            |     |
|                                                                                                           |                    |            |           |                                 | Z         | 1.941(5)     | 90.3(3,3.7)  |         | 176.1(2)               |     |
|                                                                                                           |                    |            |           |                                 |           |              | 112.4(3)     | N,O     | 83.7(2) <sup>c</sup>   |     |
|                                                                                                           |                    |            |           |                                 |           |              |              |         | 92.6(6) <sup>d</sup>   |     |
|                                                                                                           |                    |            |           |                                 |           |              |              |         | 118.9(2)               |     |
|                                                                                                           |                    |            |           |                                 |           |              |              |         | 168.0(2)               |     |
| $Cu_4(\mu_3$ -dbae)_4( $\mu$ -Cl <sub>2</sub> ac)_3(Cl <sub>2</sub> ac)                                   | tr                 | 13.293(13) | 96.32(5)  | CuO <sub>5</sub> N (×3)         | $0^{6}$   | 1.94(2,6)    | 3.134(5)     | 0,0     | 70.8(6,6.5)            | 126 |
| (not given)                                                                                               | P-I                | 14.130(6)  | 97.37(6)  |                                 |           | 2.79(2,18)   | 3.824(5)     |         | 95.9(8,11.8)           |     |
|                                                                                                           | 7                  | 18.471(13) | 106.42(6) |                                 | µac0      | 1.94(2,2)    | 3.372        |         | 144.7(6,2.1)           |     |
|                                                                                                           |                    |            |           |                                 |           | 2.52(2)      | 84.0(7,2.0)  |         | 172.2(7,5.0)           |     |
|                                                                                                           |                    |            |           |                                 |           |              |              |         |                        |     |

| TABLE III (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                         |                                                                         |                     |           |                              |                                                            |                                                              |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|-------------------------------------------------------------------------|---------------------|-----------|------------------------------|------------------------------------------------------------|--------------------------------------------------------------|------|
| Compound (colour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å) | $\begin{array}{c} \alpha \ () \\ \beta \ () \\ \gamma \ () \end{array}$ | Chromophore         | Č         | - <i>T</i> (Å)               | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | L-Cu-L (°)                                                   | Ref. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                         |                                                                         |                     | z         | 2.85(3,12)<br>2.13(2,2)      | 108.5(7,9.5)                                               | O,N 89.8(8,4.3) <sup>c</sup><br>113.0(7,2.9)<br>173.1(8,2.4) |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                         |                                                                         | $CuO_4N( \times 1)$ | $\mu_3 O$ | 1.92(1,3)<br>2.60(2)         |                                                            | 0,0 85.2(8,13.3)<br>168.1(7)                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                         |                                                                         |                     | acO<br>N  | 1.90(2)<br>2.10(2)           |                                                            | O,N 86.9(8,3.0) <sup>c</sup><br>123.9(6)<br>167.6(8)         |      |
| [Cu(µ <sub>3</sub> -deae)(µ-F <sub>3</sub> ac)]4<br>(dark blue)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tg<br>I4 <sub>1</sub> /a     | 17.903(6)               |                                                                         | CuO <sub>5</sub> N  | $\mu_3 O$ | 1.940(4,7)<br>2.721(4)       | 3.206(1)<br>3.714(1)                                       | 0,0 75.6(1,6.4)<br>94.4(2.5.0)                               | 127  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                            | 14.534(4)               |                                                                         |                     | µасО      | 1.949(4)<br>2.756(5)         | 3.375<br>111.4(2)                                          | 172.1(2)<br>N,O 86.0(2) <sup>6</sup>                         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                         |                                                                         |                     | Z         | 2.100(5)                     | · ·                                                        | 87.9(2,6.2)<br>109.5(2,4.2)<br>143.1(1)                      |      |
| forthal the state of the state | 1                            | (6)620 11               |                                                                         |                     | Ċ         |                              | 164/17                                                     | 173.7(2)                                                     | 961  |
| Cu(µ3-umac)(µ-r 3ac)]4 (01uc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m<br>P2 <sub>1</sub> /c      | (c)c/0.14<br>21.379(5)  | 104.65(2)                                                               | CuOSIN              | μ3Ο       | 1.924(10,12)<br>2.755(9,64)  | 3.134(2)<br>3.813(2)                                       | 0,0 /0.3(4,6.2)<br>98.6(4,8.2)                               | 971  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                            | 14.201(3)               |                                                                         |                     | μacO      | 1.952(11,18)<br>2.686(12.23) | 3.376<br>83.7(3.2)                                         | 140.4(3,2.0)<br>171.7(5.9)                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                         |                                                                         |                     | Z         | 2.058(12,1)<br>2.058(13,4)   | 108.7(5,6.0)                                               | O,N 85.9(5,1.2) <sup>c</sup><br>90.5(5,3.1)                  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                         |                                                                         |                     |           |                              |                                                            | 116.0(5,1.3)<br>172.7(5,2.5)                                 |      |
| $[Cu(\mu_3$ -deae)(Clac)] <sub>4</sub> (blue)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tg<br>[4,/a                  | 18.115(6)               |                                                                         | CuO <sub>s</sub> N  | μ3Ο       | 1.942(7,14)<br>2.720(6)      | 3.200(–)<br>3.746(–)                                       | <b>O,O</b> 71.6(2,2.2)<br>84.5(3.5.0)                        | 129  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - <del>1</del>               | 14.262(7)               |                                                                         |                     | acO       | 1.933(9)<br>2.663(10)        | 3.382<br>111.0(–)                                          | 100.5(4,5.7)<br>142.3(3)                                     |      |

|                                                                                     |             |            |           |                                 | Z                | 2.101(9)                   |                      | 0'N    | 89.8(4,4.1) <sup>c</sup><br>113.1(3) |     |
|-------------------------------------------------------------------------------------|-------------|------------|-----------|---------------------------------|------------------|----------------------------|----------------------|--------|--------------------------------------|-----|
| $[Cu_4(\mu_3 - apae)_4(\mu - mal)_2] \cdot 5H_2O (blue)$                            | tg<br>I4./a | 15.749(16) |           | CuO <sub>4</sub> N <sub>2</sub> | μ <sub>3</sub> Ο | 1.973(7,23)<br>2.606(6.65) | 3.222(2)<br>3.623(2) | 0,0    | 75.3(2,5.2)<br>89.3(3,6.6)           | 130 |
| · · ·                                                                               | ŝœ          | 34.407(19) |           |                                 | µmalO            | 2.433(7)                   | 3.385                |        | 158.0(3,2)                           |     |
|                                                                                     |             |            |           |                                 |                  | 2.871(11)                  | 105.3(3,6.5)         | ΖÓ     | 83.5(3,4.5) <sup>c</sup>             |     |
|                                                                                     |             |            |           |                                 | Z                | 2.005(9,34)                |                      |        | 94.5(3,2.5)                          |     |
|                                                                                     |             |            |           |                                 |                  |                            |                      |        | 117.7(3,2.1)                         |     |
|                                                                                     |             |            |           |                                 |                  |                            |                      | Z<br>Z | 94.6(4,2) <sup>d</sup>               |     |
| $[Cu(\mu_3-C_{13}H_{13}N_2O_3)(NO_3)]_4$                                            | E           | 20.47(5)   |           | CuO <sub>3</sub> N <sub>2</sub> | $\mu_{3}O$       | 1.95(4,5)                  | 3.301(12)            | 0,0    | 75(2,3)                              | 131 |
| (green)                                                                             | $P2_1/n$    | 21.27(5)   | 93.93(7)  |                                 |                  | 2.13(4,7)                  | 3.541(12)            |        | 95(2,5)                              |     |
|                                                                                     | 4           | 14.31(7)   |           |                                 | z                | 1.95(6,8)                  | 3.387                | Z,Z    | 84(2,3)                              |     |
|                                                                                     |             |            |           |                                 | $O_2 NO$         | 2.22(4,10)                 | 110(2)               | Z<br>Ó | 95(2,16)                             |     |
|                                                                                     |             |            |           |                                 |                  |                            |                      |        | 172(2,2)                             |     |
| $Cu_4(\mu_3$ -deae)_4( $\mu$ -Cl <sub>3</sub> ac) <sub>3</sub> (Cl <sub>3</sub> ac) | E           | 14.772(7)  |           | $CuO_5N(\times 3)$              | $\mu_{3}O$       | 1.96(2,1)                  | 3.094(4)             | 0,0    | 77.3(7,10.3)                         | 132 |
| (blue)                                                                              | P21/n       | 19.442(8)  | 106.87(3) |                                 |                  | 2.90(2,11)                 | 3.996(4)             |        | 97.2(7,8.2)                          |     |
|                                                                                     | 4           | 20.085(8)  |           |                                 | µac0             | 1.95(2,1)                  | 3.433                |        | 143.1(5,4.5)                         |     |
|                                                                                     |             |            |           |                                 |                  | 2.51(2,9)                  | 83.2(6,3.2)          |        | 173.3(7,2.6)                         |     |
|                                                                                     |             |            |           |                                 | z                | 2.10(2,1)                  | 109.0(8, 10.9)       | N,0    | 85.6(7,1.6) <sup>c</sup>             |     |
|                                                                                     |             |            |           |                                 |                  |                            |                      |        | 101.9(8,10.9)                        |     |
|                                                                                     |             |            |           |                                 |                  |                            |                      |        | 175.1(8,2.5)                         |     |
|                                                                                     |             |            |           | $CuO_4N(\times 1)$              | 064              | 1.95(2,1)                  |                      | 0,0    | 77.4(6,3.5)                          |     |
|                                                                                     |             |            |           |                                 |                  | 2.52(2)                    |                      |        | 93.7(7,3.0)                          |     |
|                                                                                     |             |            |           |                                 | acO              | 1.93(1)                    |                      |        | 166.2(6)                             |     |
|                                                                                     |             |            |           |                                 | Z                | 2.04(2)                    |                      | N,O    | 88.0(7,2.0) <sup>c</sup>             |     |
|                                                                                     |             |            |           |                                 |                  |                            |                      |        | 142.5(6,12.0)                        |     |
| $Cu_4(\mu_3$ -deae) $_4(\mu$ -Cl <sub>2</sub> ac) $_3(Cl_2ac)$                      | ц           | 12.370(6)  | 94.41(1)  | CuO <sub>5</sub> N (×3)         | μ3Ο              | 1.94(2,9)                  | 3.176(6)             | 0,0    | 71.5(8,8.4)                          | 133 |
| (blue)                                                                              | P-1         | 12.808(4)  | 119.97(2) |                                 |                  | 2.85(2,14)                 | 4.024(6)             |        | 90.0(10,4.8)                         |     |
|                                                                                     | Ч           | 20.163(6)  | 107.80(1) |                                 | иасО             | 1.97(3,1)                  | 3.435                |        | 103.3(10,7.6)                        |     |
|                                                                                     |             |            |           |                                 |                  | 2.71(3,19)                 | 114.0(10,6.0)        |        | 139.8(8,3.6)                         |     |
|                                                                                     |             |            |           |                                 | Z                | 2.09(2,2)                  |                      |        | 172.7(10,3.3)                        |     |
|                                                                                     |             |            |           |                                 |                  |                            |                      | Λ,Ο    | 93.4(10,4)                           |     |
|                                                                                     |             |            |           |                                 |                  |                            |                      |        | 115.2(10,2.8)                        |     |
|                                                                                     |             |            |           |                                 |                  |                            |                      |        | 173.5(10,2.0)                        |     |

| TABLE III (Continued)                                                                                       |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               |                               |                                                             |                                                            |                     |                                                                                                        |      |
|-------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------|------|
| Compound (colour)                                                                                           | Cryst. cl.<br>space gr.<br>Z | a (ỷ)<br>b (Ả)<br>c (Å)             | $egin{array}{c} lpha \left(  ight) \ eta \left(  ight) \ eta \left(  ight) \ \gamma \left(  ight) \ eta \left(  ight) \ lpha \left(  ight) \ eta \left$ | Chromophore                                                                   | Č                             | -L (Å)                                                      | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | L.                  | - <i>Cu</i> - <i>L</i> (°)                                                                             | Ref. |
|                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CuO4N (×1)                                                                    | $\mu_{3}0$ ac0 N              | 1.89(2,2)<br>2.73(2)<br>1.92(3)<br>2.05(3)                  |                                                            | 0'0<br>0'N          | 72.9(9,3.4)<br>93.9(10,4.9)<br>125.0(9,5.9)<br>167.3(7)<br>90.0(11,3.9)<br>121.1(7)                    | 1    |
| Cu∢(μ₃-dmae)₄(μ-Cl₂ac)₂(Cl₂ac)₂<br>(blue)                                                                   | ш<br>С2/с<br>4               | 18.675(9)<br>15.109(8)<br>16.403(8) | 101.33(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CuO <sub>5</sub> N (×2)                                                       | μ <sub>3</sub> 0<br>μac0<br>N | 1.954(7,12)<br>2.858(6)<br>1.947(8)<br>2.517(7)<br>2.061(8) | 3.124(2)<br>3.935(2)<br>3.481<br>110.5(3,3.3)              | 0,0<br>0,N          | 100,210)<br>90.2(3,4.7)<br>108.5(3)<br>144.5(2)<br>84.8(3)<br>93.0(4,2.0)                              | 134  |
| ن<br>ج<br>ج<br>ج                                                                                            |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CuO₄N (×2)                                                                    | $\mu_{3}O$<br>acO<br>N        | 1.931(6,7)<br>2.633(7)<br>1.949(7)<br>2.043(9)              |                                                            | 0,0<br>0,0          | 75.4(3,3)<br>75.4(3,3.4)<br>95.5(3,3.6)<br>112.9(3)<br>137.5(2)<br>86.9(3,1.4)°<br>91.1(3)<br>118.5(3) |      |
| ы. сы-(луд-сы-(луд-сы<br>Сц <sub>4</sub> (µ-salen) <sub>2</sub> (µ-Cl) <sub>2</sub> Cl <sub>2</sub> (black) | m<br>P2 <sub>1/</sub> n<br>2 | 7.791(6)<br>16.780(6)<br>10.536(5)  | 100.80(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CuO <sub>2</sub> N <sub>2</sub> (×2)<br>CuCl <sub>3</sub> O <sub>2</sub> (×2) | 0 <sup><i>н</i></sup>         | 1.91(1,2)<br>1.90(1,1)<br>1.99(1)<br>2.30(1)                | 3.109<br>O 100.5(7,5.2)<br>3.439<br>CI 95.2(5)             | 0,0<br>0,N<br>Cl,Cl | 85.1(7)<br>95.1(7,1.0) <sup>d</sup><br>175.3(7,4)<br>85.1(7) <sup>6</sup><br>88.9(4,4.1)<br>153.6(4)   | 135  |

|                                                                                                  |                         |                        |                      |                        | ភ្វូប          | 2.328(4,38)<br>2.239(6)    |                      | cro    | 92.8(6,2.9)<br>107.4(6,2.8)<br>174 3(6) |     |
|--------------------------------------------------------------------------------------------------|-------------------------|------------------------|----------------------|------------------------|----------------|----------------------------|----------------------|--------|-----------------------------------------|-----|
|                                                                                                  |                         |                        |                      |                        |                |                            |                      | 0'0    | 73.3(7)                                 |     |
| Cu₄(μ-Cl) <sub>6</sub> (terpy) <sub>2</sub> Cl <sub>2</sub> (gr <del>cc</del> n)                 | 날                       | 11.146(7)<br>• 365(A)  | 97.13(5)<br>03.60(5) | CuCl <sub>5</sub> (×2) | μCI            | 2.255(1,16)                | 3.456(1)             | ต,ต    | 85.2(1,3.1)                             | 136 |
|                                                                                                  | 2                       | 6.303(4)<br>9.263(5)   | (c)00.cz             |                        |                | 2.344(1)<br>3.033(1)       | NOT BIACH            |        | (4.2,1)C.CE                             |     |
|                                                                                                  |                         |                        |                      |                        | D              | 2.234(1)                   |                      |        | (1                                      |     |
|                                                                                                  |                         |                        |                      | $CuN_3Cl_2$ (×2)       | ۲<br>۲         | 2.221(1)                   | 3.595(1)             | CI,CI  | 95.5(1)                                 |     |
|                                                                                                  |                         |                        |                      |                        |                | 2.613(1)                   | 90.1(1,5.2)          | Ū<br>Ž | 96.1(1,3.7)                             |     |
|                                                                                                  |                         |                        |                      |                        | Z              | 1.991(4,53)                |                      |        | 172.1(1)                                |     |
|                                                                                                  |                         |                        |                      |                        |                |                            |                      | Z<br>Z | 79.8(1,2) <sup>c</sup><br>157 8(1)      |     |
| ( <b>Me</b> <sub>3</sub> NH) <sub>2</sub> [Cu <sub>4</sub> (μ-Cl) <sub>6</sub> Cl <sub>4</sub> ] | E                       | 6.114(3)               |                      | CuCl <sub>4</sub> (×2) | μCI            | 2.288(3,27)                | Not given            | СС     | 89.8(1,3.6)                             | 137 |
| (dark brick red)                                                                                 | P2 <sub>1</sub> /c<br>2 | 10.253(4)<br>19.05(1)  | 97.88(3)             |                        |                |                            |                      |        | 172.4(1,1.0)                            |     |
|                                                                                                  |                         |                        |                      | CuCl <sub>4</sub> (×2) | μCI            | 2.306(3,15)                | Not given            | ClCI   | 90.1(1,5.7)                             |     |
|                                                                                                  |                         |                        |                      |                        | Ę              |                            |                      | 5<br>5 | 170.2(1,4.8)                            |     |
| (Me4N)2[Cu4(µ-CI)6CI4] (red)                                                                     | E                       | 0.072(2)               |                      | CuCl4 (×2)             | Ę              | 2.290(1,50)                | Not given            | 5      | 90.0(1,5.8)                             | 138 |
|                                                                                                  | P2 <sub>1</sub> /c<br>2 | 19.574(1)<br>10.610(3) | 99.46(2)             |                        |                |                            | 93.5(1,1)            |        | 167.6(1,5.4)                            |     |
|                                                                                                  |                         |                        |                      | CuCl4 (×2)             | ថ្មច           | 2.318(1,28)<br>2.234(1,19) | Not given<br>93.5(1) | С'С    | 90.0(1,4.5)<br>171.6(1 3 3)             |     |
| $(4-\text{map})_2[\text{Cu}_4(\mu-\text{Cl})_6\text{Cl}_4]$                                      | E                       | 3.847(2)               |                      | CuCl <sub>4</sub> (×2) | n<br>C         | 2.272(7,35)                | Not given            | CC     | 90.0(3.3.7)                             | 138 |
| (reddish brown)                                                                                  | P2 <sub>1</sub> /n<br>2 | 21.276(2)<br>15.336(6) | 96.44(3)             |                        |                | •<br>•                     | 93.7(3)              |        | 178.0(3,6)                              |     |
|                                                                                                  | I                       | (2)22222               |                      | CuCl <sub>4</sub> (×2) | D, C           | 2.372(7,1)                 | Not given            | CI,CI  | 90.0(3,7.4)                             |     |
|                                                                                                  |                         |                        |                      | ;                      | 5              | 2.229(7,3)                 | 99.9(2)              |        | 168.9(3,2.3)                            |     |
| (Et <sub>4</sub> N)4[Cu <sub>4</sub> (μ-Cl) <sub>6</sub> Cl <sub>6</sub> ] (red)                 | ε                       | 13.779(3)              |                      | CuCl <sub>5</sub> (×2) | ũ              | 2.316(2,4)                 | Not given            | ฉ๊อ    | 88.6(1.66)                              | 139 |
|                                                                                                  | P21/c                   | 11.316(2)              | 106.04(2)            |                        |                | 2.662(2)                   | 91.9(1,3.6)          |        | 105.6(1,2.3)                            |     |
|                                                                                                  | 7                       | 17.883(3)              |                      |                        | Ö              | 2.320(2)                   |                      |        | 148.8(1)<br>171 4(1)                    |     |
|                                                                                                  |                         |                        |                      | CuCl <sub>4</sub> (×2) | D <sup>r</sup> | 2.287(2,37)                | Not given            | cia    | 90.0(1,8.4)                             |     |
|                                                                                                  |                         |                        |                      |                        | ប              | 2.214(2,2)                 | 96.2(1)              | •      |                                         |     |

| Compound (colour)                                                                                                                 | Cryst. cl.<br>space gr.<br>Z | a (ỷ)<br>c (ỷ)<br>c (ỷ)             | $egin{array}{c} lpha \left( ^{\circ}  ight) \ eta \left( ^{\circ}  ight) \ \gamma \left( ^{\circ}  ight) \end{array} \end{array}$ | Chromophore                          | Ğ         | - <i>T</i> (Å)                            | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) |            | - <i>Cu</i> - <i>L</i> (°)                              | Ref. |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|-------------------------------------------|------------------------------------------------------------|------------|---------------------------------------------------------|------|
| (Me <sub>3</sub> NH) <sub>2</sub> [Cu <sub>4</sub> (μ-Br) <sub>6</sub> Br <sub>4</sub> ]<br>(dark violet)                         | m<br>P2 <sub>1</sub> /c<br>4 | 9.556(3)<br>14.703(4)<br>18.173(5)  | 99.75(3)                                                                                                                          | CuBr <sub>4</sub> (×2)               | μBr       | 2.240(6,20)                               | Not given<br>94.0(2,1.8)                                   | Br,Br      | 90.0(2,4.0)<br>174.2(2,4.8)                             | 140  |
|                                                                                                                                   |                              |                                     |                                                                                                                                   | CuBr <sub>4</sub> (×2)               | μBr<br>Br | 2.472(6,39)<br>2.378(6,17)                |                                                            | Br,Br      | 90.0(2,6.6)<br>170.0(2,4.5)                             |      |
| $Cu_4(\mu$ -OCMe <sub>3</sub> ) <sub>6</sub> {OC(CF <sub>3</sub> ) <sub>3</sub> } <sub>2</sub> (green)                            | - P:t                        | 10.609(3)<br>10.667(3)<br>11.151(3) | 100.69(3)<br>95.37(3)<br>99.65(3)                                                                                                 | CuO4 (×2)                            | 0π        | 1.947(4,31)                               | Not given<br>98.9(2,6)                                     | 0,0        | 79.9(2,1.9)<br>108.5(2,2.8)<br>148.8(2,3.8)             | 141  |
| C: Chain                                                                                                                          |                              |                                     |                                                                                                                                   | CuO <sub>3</sub> (×2)                | 07<br>07  | 1.861(4,5)<br>1.797(5)                    |                                                            | 0,0        | 83.3(2)<br>138.2(2,6.7)                                 |      |
| [Cu <sub>4</sub> (μ-OH) <sub>3</sub> {(mpi) <sub>4</sub> O}] · 2.5C <sub>6</sub> H <sub>6</sub> ·<br>H <sub>2</sub> O (not given) | tr<br>P-1<br>2               | 14.586(1)<br>14.925(1)<br>20.781(2) | 105.48(1)<br>105.48(1)<br>80.24(1)                                                                                                | CuN <sub>3</sub> O <sub>2</sub> (×2) | N<br>N    | 1.992(-,53)<br>2.200(-,68)<br>2.002(-,75) | Not given                                                  | N,N<br>0,0 | $89.2(-,7)^{d}$ $177.1(-,2.2)$ $101.4(-,5.2)$           | 142  |
|                                                                                                                                   |                              |                                     |                                                                                                                                   |                                      |           |                                           |                                                            | C,N        | 90.3(-,4.4)<br>122.4(-,8.6)<br>150.0(-)                 |      |
|                                                                                                                                   |                              |                                     |                                                                                                                                   | CuN <sub>3</sub> O (×2)              | 0H₁<br>N  | 1.873(-,10)<br>1.968(-,87)                |                                                            | N,N<br>O,N | 89.7(-,1.0) <sup>d</sup><br>154.5(-,2.2)<br>96.0(-,3.0) |      |
| $[Cu_4(\mu-sed)_2(hfacac)_4] \cdot 0.6CHCl_3$<br>(deen preen)                                                                     | tr<br>P-1                    | 17.370(6)<br>13.374(5)              | 93.14(5)<br>99 54(5)                                                                                                              | CuO4N (×2)                           | Оή        | 1.903(6)<br>2 398(6)                      | Not given<br>O 94 3(2)                                     | 0,0        | 153.2(-,2.1)<br>88.9(3,73) <sup>d</sup><br>175.0(3)     | 143  |
|                                                                                                                                   | 7                            | 8.553(4)                            | 104.33(5)                                                                                                                         |                                      | zo        | 1.966(9)<br>1.976(7,39)                   |                                                            | 0'N        | 92.1(4,4.2)<br>104.8(3)<br>168.0(4)                     |      |

TABLE III (Continued)

|                                                                                                                                  |                             |                                    |                                   | CuO <sub>3</sub> N <sub>2</sub> (×2) | O Z O                            | 2.024(9)<br>2.276(9)<br>1.892(9)<br>2.012(11,38) |                                                        | 0'0 X X           | 84.4(3,6) <sup>d</sup><br>95.1(3)<br>89.1(4,3.9)<br>101.7(4,1.4)<br>96.1(4)                        |     |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|-----------------------------------|--------------------------------------|----------------------------------|--------------------------------------------------|--------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------|-----|
| [Cu <sub>2</sub> (μ-C <sub>14</sub> H <sub>12</sub> N <sub>2</sub> O <sub>2</sub> )(μ-ac) <sub>2</sub> ] <sub>2</sub><br>(brown) | 2 PI                        | 8.365(2)<br>9.667(1)<br>12.556(1)  | 98.40(2)<br>103.97(5)<br>94.26(2) | CuO <sub>5</sub> (×2)                | $\mu acO$<br>$\mu O$             | 1.913(4)<br>2.181(5)<br>1.958(4,2.4)             | 3.303(1) <sup>e</sup><br>115.3(2)                      | 0,0               | 83.6(1) <sup>6</sup><br>102.1(2,13.2)<br>163.4(2)                                                  | 131 |
|                                                                                                                                  |                             |                                    |                                   | CuO <sub>3</sub> N <sub>2</sub> (×2) | µас0<br>µ0<br>N                  | 2.077(4,19)<br>1.933(3)<br>2.010(4,1)            |                                                        | 0,0<br>0,N<br>0,N | 97.6(2,13.1)<br>92.2(2) <sup>d</sup><br>89.6(2) <sup>d</sup><br>100.6(2,15.2)<br>133.9<br>177.1(2) |     |
| [Cu <sub>2</sub> (μ-salpd)(μ-ac)(μ-OMe)] <sub>2</sub><br>(dark green)                                                            | m<br>P2 <sub>1/n</sub><br>2 | 11.826(2)<br>17.192(4)<br>9.836(2) | 94.08(2)                          | CuO <sub>5</sub> (×2)                | μ <b>Μe</b> Ο<br>μsalpdΟ<br>μacΟ | 1.922(3,5)<br>2.027(3)<br>2.323(3)<br>1.926(3)   | 3.027(1)<br>3.123(1)<br>3.075<br>94.2(1)<br>103.4(2.3) | 0,0               | 73.1(1,3.0)<br>93.9(1,1.2)                                                                         | 144 |
|                                                                                                                                  |                             |                                    |                                   | CuO <sub>3</sub> N <sub>2</sub> (×2) | µacO<br>µsalpdO<br>salpdN        | 2.235(4)<br>1.944(4,2.0)<br>1.985(5,7)           |                                                        | 0 V V<br>0 O V    | 80.5(2)<br>91.2(2)<br>95.7(2)                                                                      |     |
| [Cu <sub>2</sub> (µ-cdp)(µ-ac) <sub>2</sub> l2 · H <sub>2</sub> O<br>(pale brown)                                                | tr<br>P-1<br>2              | 8.365(2)<br>9.667(1)<br>12.556(1)  | 98.40(2)<br>103.97(2)<br>94.26(2) | CuO <sub>5</sub> (×2)                | μac0                             | 1.958(4,24)<br>1.913(4)<br>2.181(5)              | 3.053(1)<br>3.303(1)<br>3.178<br>103.1(-)              | 0,0               | 80.3(2,3.4)<br>96.2(2,2.5)<br>101.6(2,1.0)<br>160.0(2,3.4)                                         | 145 |
|                                                                                                                                  |                             |                                    |                                   | CuO <sub>3</sub> N <sub>2</sub> (×2) | μ0<br>μac0<br>Ν                  | 1.933(3)<br>2.077(4,19)<br>2.010(4,1)            | х<br>2                                                 | N,N<br>0,0<br>0,0 | 92.2(2) <sup>d</sup><br>88.6(2,3.2)<br>115.4(2)<br>133.9(2)<br>177.1(2)<br>91.1(2,7)<br>110.7(2)   |     |

| I ABLE III (Continuea)                                                             |                              |                         |                                                                                                                                   |                           |                 |                         |                                                            |            |                                 |      |
|------------------------------------------------------------------------------------|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|-------------------------|------------------------------------------------------------|------------|---------------------------------|------|
| Compound (colour)                                                                  | Cryst. cl.<br>space gr.<br>Z | a (ỷ)<br>c (ỷ)<br>c (ỷ) | $egin{array}{c} lpha \left( ^{\circ}  ight) \ eta \left( ^{\circ}  ight) \ \gamma \left( ^{\circ}  ight) \end{array} \end{array}$ | Chromophore               | Cn              | - <i>L</i> (Å)          | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | Γ          | -Си-L (°)                       | Ref. |
| D: Step-like                                                                       |                              |                         |                                                                                                                                   |                           |                 |                         |                                                            |            |                                 |      |
| Cu <sub>4</sub> (μ <sub>3</sub> ,μ-tris) <sub>2</sub> Cl <sub>4</sub> (green)      | 년<br>1                       | 9.182(1)<br>9.120(7)    | 99.85(1)<br>87.01(1)                                                                                                              | CuO <sub>3</sub> NCl (×2) | μ3Ο             | 1.983(6,38)<br>7.407(6) | 2.841(1)                                                   | Z Č        | 83.8(3) <sup>c</sup><br>98 8/7) | 146a |
|                                                                                    | <u>-</u>                     | 8.817(1)                | 84.13(1)                                                                                                                          |                           | Z               | 1.984(7)                | 2.919                                                      | D D<br>D Z | 97.9(2)                         |      |
|                                                                                    |                              | ~                       |                                                                                                                                   |                           | Ū               | 2.253(2)                | 92.7(2,14)                                                 | 0,0        | 79.8(2)                         |      |
|                                                                                    |                              |                         |                                                                                                                                   | CuO <sub>2</sub> NCI (×2) | 0,1             | 1.947(5,8)              |                                                            | NO         | 84.8(2) <sup>c</sup>            |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           | Z               | 1.985(7)                |                                                            | 0,0        | 98.9(2)                         |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           | G               | 2.260(2)                |                                                            | D,Z        | 95.1(2)                         |      |
| $[Cu_2(\mu_3,\mu-dbm)(\mu-me)_2(\mu-dbm)_2$                                        | tr                           | 13.823(1)               | 91.699(5)                                                                                                                         | CuO <sub>5</sub>          | μ3dbmO          | 1.954(2)                | 2.965°                                                     | 0,0        | 78,26(10)                       | 110  |
| (green)                                                                            | P-1                          | 12.473(2)               | 123.216(5)                                                                                                                        |                           | pudbmO          | 1.926(2)                | 99.3(1,1.6)                                                |            | 88.94(11,7.9)                   |      |
|                                                                                    | I                            | 12.978(1)               | 110.723(5)                                                                                                                        |                           | meO             | 1.903(2,0)              |                                                            |            | 102.04(11)                      |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           | μmeO            | 2.697(3)                |                                                            |            | 173.83(10)                      |      |
|                                                                                    |                              |                         |                                                                                                                                   | CuOs                      | $\mu_3$ dbmO    | 1.985(2)                |                                                            | 0,0        | 84.6(11,5.20)                   |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           |                 | 2.312(3)                |                                                            |            | 101.84(11,3.38)                 |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           | 0mdbu/          | 1.925(2)                |                                                            |            |                                 |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           | meO             | 1.927(3)                |                                                            |            |                                 |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           | μmeO            | 1.928(2)                |                                                            |            |                                 |      |
| [Cu <sub>4</sub> (μ <sub>3</sub> -OH) <sub>2</sub> (μ-dfmph) <sub>2</sub> ] · 2dmf | н                            | 11.653(2)               | 106.23(1)                                                                                                                         | CuO4N                     | $0H_{\ell\mu}$  | 1.926(4,9)              | 2.938(1)                                                   | 0'0        | 81.3(2,2.2)                     | 146b |
| (dark green)                                                                       | P-1                          | 12.765(2)               | 104.68(1)                                                                                                                         |                           |                 | 2.322(5)                | 3.282(1)                                                   |            | 98.2(2,7.5)                     |      |
|                                                                                    | 4                            | 9.318(2)                | 88.32(1)                                                                                                                          |                           | О́́л            | 1.933(4,11)             | 3.135                                                      | N,O        | 82.4(2,2)                       |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           |                 | 2.718(6)                | 99.0(2,2.6)                                                |            | 91.4(2,0)                       |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           | 0               | 1.901(5)                | 88.0(2)                                                    |            | 104.4(2,2)                      |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           | Z               | 1.911(5,2)              |                                                            |            |                                 |      |
| Cu4(μ3-PhCH2O)2(μ-PhCH2O)2                                                         | E                            | 11.53(3)                |                                                                                                                                   | CuO <sub>5</sub>          | $0^{c \eta}$    | 1.88(1,1)               | 2.995(3)                                                   | 0'0        | 94.3(1,4.1)                     | 147  |
| $(\mu$ -acac) <sub>2</sub> (acac) <sub>2</sub> (blue)                              | P2 <sub>1</sub> /c           | 22.68(5)                | 112.0(3)                                                                                                                          |                           |                 | 2.42(1)                 | 5.399(3)                                                   |            | 103.3(1,2.5)                    |      |
|                                                                                    | 7                            | 10.19(3)                |                                                                                                                                   |                           | 0 <sup>rd</sup> | 1.95(1,1)               | 3.745                                                      |            |                                 |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           | µacac0          | 1.92(1)                 | 104.9(1,1.0)                                               |            |                                 |      |
|                                                                                    |                              |                         |                                                                                                                                   |                           |                 | 2.71(1)                 |                                                            |            |                                 |      |

TABLE III (Continued)

|                                                                                  |                         |                       |           |                                       | acacO             | 1.91(1,2)                              |                        |        |                      |     |
|----------------------------------------------------------------------------------|-------------------------|-----------------------|-----------|---------------------------------------|-------------------|----------------------------------------|------------------------|--------|----------------------|-----|
| $[Cu_{3}(\mu_{1}-N_{3})(\mu_{1}-N_{3})(N_{3})(\mu_{2}-md)$ .                     | t                       | 14.104(2)             | 83.79(1)  | $CuN_4O_2(\times 2)$                  | M <sub>6</sub> 11 | 1.973(6)                               | 3.120(1)               | N,O    | 76.5(3)              | 148 |
| (ClO <sub>4</sub> ) <sub>2</sub> ] <sub>2</sub> (dark brown)                     | P-I                     | 12.199(2)             | 74.19(1)  |                                       |                   | 2.858(6)                               | 5.573(1)               |        | 92.4(2)              |     |
|                                                                                  | 7                       | 10.908(2)             | 65.32(1)  |                                       | N<br>N            | 1.969(7)                               | 3.983                  |        | 166.1(2)             |     |
|                                                                                  |                         |                       |           |                                       | Npm               | 1.965(6)                               | O 102.9(3)             | Z<br>Z | 95.3(3,1)            |     |
|                                                                                  |                         |                       |           |                                       | Opun              | 1.987(5)                               | N 104.5(4)             |        | 168.8(3)             |     |
|                                                                                  |                         |                       |           |                                       | 0°CIO             | 2.563(7)                               |                        |        |                      |     |
|                                                                                  |                         |                       |           | CuN₄O (×2)                            | M <sub>5</sub> N  | 1.927(7)                               |                        | Ω,0    | 76.1(2)              |     |
|                                                                                  |                         |                       |           |                                       | N                 | 2.466(7)                               |                        |        | 92.3(2)              |     |
|                                                                                  |                         |                       |           |                                       | Z                 | 1.972(7)                               |                        |        | 166.5(3)             |     |
|                                                                                  |                         |                       |           |                                       | Nbm               | 1.973(7)                               |                        | Z'Z    | 95.5(3,2.7)          |     |
|                                                                                  |                         |                       |           |                                       | Opmrd             | 2.003(4)                               |                        |        | 168.3(3)             |     |
| [Cu <sub>2</sub> (µ-Cl)(µ-Cl)(µ-Et <sub>2</sub> dtc) <sub>2</sub> ] <sub>2</sub> | В                       | 11.203(1)             |           | CuCl <sub>3</sub> S <sub>2</sub> (×2) |                   | Not given                              | Not given              |        | Not given            | 149 |
| (dark)                                                                           | P2 <sub>1</sub> /n<br>4 | 18.989(2)<br>9.043(2) | 98.83(1)  | ,<br>,<br>,                           |                   | i                                      |                        |        | )                    |     |
|                                                                                  |                         | ~                     |           | $CuCl_3S_2$ (×2)                      |                   | Not given                              |                        |        | Not given            |     |
| $[Cu_4(\mu_3-OH)(\mu-bpen)_2(H_2O)]$ .                                           | or                      | 27.287(14)            |           | $CuO_3N_2$ (×1)                       | $\mu_{3}HO$       | 1.949(3)                               | 2.928(1)               | Z<br>Z | 81.3(2) <sup>c</sup> | 150 |
| (ClO <sub>4</sub> ) <sub>2</sub> · H <sub>2</sub> O (green)                      | Pbca                    | 12.000(6)             |           | ,<br>,<br>,                           | Q                 | 1.903(3)                               | 3.1                    | 0'X    | 97.8(2,3.4)          |     |
|                                                                                  | I                       | 15.487(8)             |           |                                       | Z                 | 1.984(5,20)                            | 3.019                  | 0,0    | 80.2(1)              |     |
|                                                                                  |                         |                       |           |                                       | H <sub>2</sub> O  | 2.234(4)                               | HO 97.1(1)<br>100.4(2) |        |                      |     |
|                                                                                  |                         |                       |           | $CuO_3N_2$ (×3)                       | $0H_{e\mu}$       | 1.956(3)                               | ~                      | Z.Z    | 82.0(2) <sup>c</sup> |     |
|                                                                                  |                         |                       |           | ,<br>1<br>1                           |                   | 2.420(4)                               |                        | 0'Z    | 98.4(2,3.4)          |     |
|                                                                                  |                         |                       |           |                                       | O <sub>1</sub>    | 1.907(4)                               |                        | 0,0    | 79.9(1)              |     |
|                                                                                  |                         |                       |           |                                       | z «               | 1.985(4,21)                            |                        | (      |                      | Ċ   |
| [Cu₄(µ <sub>3</sub> -OMe) <sub>2</sub> (µ-OMe) <sub>2</sub>                      | E                       | 10.110(2)             |           | CuO5 (x2)                             | µ3MeU             | 1.938(3,24)                            | 2.90//(8)              | D,U    | /8./(2,1.0)          | 96b |
| (dpm)4] (light blue)                                                             | P2 <sub>1</sub> /a<br>2 | 30.162(9)<br>9.657(2) | 103.20(2) |                                       | μMcO<br>dpmO      | 1.898(5,19)<br>1.911(5,12)<br>2.379(6) |                        |        | 93.5(2,1.8)          |     |
|                                                                                  |                         |                       |           |                                       |                   |                                        |                        |        |                      |     |

| TABLE III (Continued)                                                                                                                       |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                         |                                   |                                                            |             |                             |      |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|-----------------------------------|------------------------------------------------------------|-------------|-----------------------------|------|
| Compound (colour)                                                                                                                           | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)             | $egin{array}{c} lpha \left( e  ight) \ eta \left( e  ight) \ eta \left( e  ight) \ \gamma \left( e  ight) \ eta \left( e  ight)$ | Chromophore                     | Ğ                                       | - <i>L</i> (Å)                    | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | 7           | ,- <i>C</i> u-L (°)         | Ref. |
| E: Unique                                                                                                                                   |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                         |                                   |                                                            |             |                             |      |
| Cu <sub>4</sub> (μ <sub>3</sub> -OH) <sub>2</sub> (μ-inicNO) <sub>4</sub> (μ-SO <sub>4</sub> ) ·<br>(H <sub>2</sub> O) <sub>4</sub> (green) | ч С в                        | 19.809(8)<br>6.844(3)<br>19.533(12) | 140.9(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CuO <sub>5</sub> (×2)           | μοιεΟ<br>μΟςΟ                           | 1.98(2,1)<br>1.92(2,0)<br>1.92(4) | 2.855(6)<br>HO 92.1(5)<br>117.9(9)                         | 0,0         | 89.9(7,7.5)<br>164.8(9,4)   | 151  |
|                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CuO <sub>5</sub> (×2)           | $\mu_{3}HO$<br>$\mu_{110}O$<br>$H_{2}O$ | 1.95(1)<br>1.96(2,1)<br>2.08(1.9) | 2                                                          | 0,0         | 86.9(8)<br>165.2(6,1.0)     |      |
| $Cu_4(\mu-OMe)_4(\mu-ain)_4(dmf)_2$                                                                                                         | ц                            | 9.189(3)                            | 88.09(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $CuO_2N_2$ (×2)                 | μMeO                                    | 1.920(2,6)                        | 2.999(1)                                                   | 0,0         | 75.30(9)                    | 152  |
| (not given)                                                                                                                                 | I-4                          | 9.511(2)<br>12.704(2)               | 83.26(3)<br>66.75(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | μainN                                   | 1.966(2,1)                        | 3.0141(8)<br>3.006                                         | N,0         | 97.2(1,4)<br>94.3(1,2.0)    |      |
|                                                                                                                                             |                              |                                     | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                                         |                                   | O 102.9(1,6)                                               |             | 166.5(1,4)                  |      |
|                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | OoM.                                    | 1 023(7 6)                        |                                                            | z c<br>z c  | 92.4(1)<br>75 88(9)         |      |
|                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (TV) Zutenna                    | uainN                                   | 1.985(2,20)                       |                                                            | 0<br>N<br>N | 95.2(1,2)                   |      |
|                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | OJunb                                   | 2.422(3)                          |                                                            |             | 170.4(1,2)                  |      |
|                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | -                                       | 1 000/0 5                         | 10/100 5                                                   | z Z         | 93.6(1)<br>06.8(4.7.7)      | 157  |
| الحسور (                                                                                                                                    | m<br>P2./c                   | 19.831(6)                           | 97.64(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CuO4N                           | naomu                                   | 1.890(8, 3)<br>1.905(9, 3)        | 5.021(2)<br>6.9                                            |             | 77.2(3.0)                   | CC1  |
|                                                                                                                                             | 5                            | 9.809(8)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                         | 1.933(8,4)                        | 102.8(4,2)                                                 |             | 93.3(3,2.6) <sup>d</sup>    |      |
|                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | pyN                                     | 2.31(1,2)                         |                                                            |             | 164.4(4,1.5)                |      |
| [Cu₄(µ-OH) <sub>2</sub> (µ-tn])(H <sub>2</sub> O) <sub>6</sub> .                                                                            | E                            | 11.907(3)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CuO <sub>3</sub> N <sub>2</sub> | $OH^{\eta}$                             | 1.881(5)                          | 3.190(2)                                                   | 0,0         | 92.6(4,3.7)                 | 154  |
| (EtOH) <sub>2</sub> ](CF <sub>3</sub> SO <sub>3</sub> ) <sub>6</sub> (green)                                                                | 12/m                         | 19.858(3)                           | 105.31(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | H <sub>2</sub> 0                        | 1.968(6)                          | 116.0(5)                                                   | 0,N         | 89.5(3,1.9)<br>176 244 7 15 |      |
|                                                                                                                                             | 4                            | (+)(0)(-)(1)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | Amm                                     | (                                 |                                                            | ZZ          | 90.3(2) <sup>d</sup>        |      |
| $[Cu_4(\mu-OH)_2(\mu-tnl)(H_2O)_8)$ .                                                                                                       | E                            | 10.813(9)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $CuO_3N_2$                      | ОНμ                                     | 1.885(3,0)                        | 3.202(2)                                                   | 0,0         | 92.0(2,1.1)                 | 154  |
| (CF <sub>3</sub> SO <sub>3</sub> ) <sub>6</sub> · 6H <sub>2</sub> O (green)                                                                 | I2/m                         | 26.204(15)                          | 98.73(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | $\mu$ tnl                               | 2.008(5,22)                       | 116.3(3)                                                   | 0,N         | 90.8(2,5.4)                 |      |
|                                                                                                                                             | 6                            | 13.489(15)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | $H_2O$                                  | 1.962(4)                          |                                                            |             | 175.5(2,4.2)                |      |
|                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                         | 2.473(5)                          |                                                            | z<br>z      | 89.0(2)                     |      |

| $[Cu_4(\mu-N_3)_2(\mu-bttt)(N_3)_2]$<br>2MeOH (green)                                                                    | m<br>P2 <sub>1</sub> /a<br>2 | 8.559(3)<br>18.719(6)<br>13.485(7)     | 97.29(4)                           | $CuO_2N_2(\times 2)$                 | ubtttO<br>N<br>N <sub>3</sub> N                               | 1.919(4,3)<br>1.964(4)<br>1.978(2)                           | 3.045(1)<br>3.460(1)<br>3.253<br>Not eiven                       | 0,0<br>0,0<br>0,0        | 78.2(2)<br>95.8(2,2.4)<br>158.6(2)<br>161.9(2)                                                        | 11  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------|------------------------------------|--------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                          |                              |                                        |                                    | CuN <sub>3</sub> O <sub>2</sub> (×2) | μbtttO<br>N <sub>5</sub> N <sub>3</sub> N<br>N <sub>5</sub> N | 1.957(4)<br>2.341(4)<br>1.977(5)<br>1.978(5)<br>1.993(5)     | b                                                                | X OX                     | 80.900,30<br>91.7(2,8)<br>109.5(1)<br>96.7(2,1.1)<br>166.0(2)                                         |     |
| [{Cu(µ-fptsc)} <sub>4</sub> (µ-P <sub>2</sub> O <sub>7</sub> )] ·<br>nH <sub>2</sub> O (dark green)                      | m<br>8<br>8                  | 29.074(6)<br>28.021(3)<br>13.374(3)    | 102.93(2)                          | CuN <sub>2</sub> S <sub>2</sub> O    | μΡ <sub>2</sub> Ο <sub>7</sub> Ο<br>Ν<br>S                    | 1.910(7,6)<br>1.984(8,64)<br>2.273(3,7)<br>2.881(3,29)       | 3.231(2)<br>3.288(2)<br>3.260                                    | S,S<br>S,O<br>S,N<br>O,N | 97.8(1,1.3)<br>97.8(3,5.0)<br>88.2(3,4.1)<br>163.4(2,3.2)<br>95.3(3,1.6)<br>173.5(3,2.6)<br>81.2(3,3) | 155 |
| [Cu <sub>2</sub> (μ <sub>3</sub> -OH)(μ-F <sub>3</sub> ac)(F <sub>3</sub> ac)(qu) <sub>2</sub> ] <sub>2</sub><br>(green) | P.1                          | 10.401(16)<br>12.773(20)<br>15.237(24) | 58.07(5)<br>124.22(4)<br>113.81(4) | CuO4N (×2)                           | $\mu_{3}$ HO<br>$\mu F_{3}$ acO<br>quN                        | 1.977(6,13)<br>1.936(7)<br>2.174(6)<br>1.989(4)              | 2.996(4)<br>3.502(5)<br>3.282<br>98.6(2)<br>116.9(3)<br>124.8(3) | 0,0<br>0,N               | 90.3(3,8.9)<br>100.6(3)<br>166.7(2)<br>92.4(3,5.4)<br>171.2(4)                                        | 156 |
|                                                                                                                          |                              |                                        |                                    | CuO4N (×2)                           | $\mu_{3}HO$ $\mu_{F_{3}acO}$ $F_{3acO}$ $quN$                 | 1.963(6)<br>1.968(7)<br>2.200(7)<br>1.990(6)<br>2.004(6)     |                                                                  | 0'0<br>0'N               | 91.7(3,1.3)<br>102.4(3)<br>166.6(2)<br>89.4(3,3.7)<br>174.2(2)                                        |     |
| [Cu <sub>2</sub> (µ <sub>3</sub> -bc)(µ-bc)(py) <sub>2</sub> ] <sub>2</sub><br>(not given)                               | m<br>P2 <sub>1</sub> /n<br>4 | 16.074(6)<br>25.187(8)<br>21.167(6)    | 95.96(3)                           | CuO4N (×2)                           | 0 <sup>μ</sup><br>0<br>DyN V                                  | 2.00(2)<br>2.74(2,12)<br>1.96(2,1)<br>1.89(2,1)<br>2.01(3,1) | 3.08(1)<br>3.68(1)<br>3.34<br>111.5(1,7.5)<br>131.5(1,4.5)       | 0 Z<br>0 0               | 87.8(1.0,3.3)<br>93.3(1.0,4.3)                                                                        | 157 |

| Compound (colour)                                              | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å) | $egin{array}{c} lpha \left( ^{\circ}  ight) \ eta \left( ^{\circ}  ight) \ \gamma \left( ^{\circ}  ight) \end{array} \end{array}$ | Chromophore             | Cu-L (Å)           | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | L      | -Cu-L (°)                | Ref. |
|----------------------------------------------------------------|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|------------------------------------------------------------|--------|--------------------------|------|
|                                                                |                              |                         |                                                                                                                                   | CuO <sub>3</sub> N (x2) | $\mu_3O 1.97(2,1)$ |                                                            | 0'0    | 86.6(9,4.9)              |      |
|                                                                |                              |                         |                                                                                                                                   | •<br>•                  | μO 1.97(2)         |                                                            | N,O    | 93.5(1.0,1.5)            |      |
|                                                                |                              |                         |                                                                                                                                   |                         | 0 1.89(2,2)        |                                                            |        |                          |      |
|                                                                |                              |                         |                                                                                                                                   |                         | pyN 2.00(3,1)      |                                                            |        |                          |      |
| $[Cu_4(\mu-dmap)_2(\mu-ac)_4](PF_6)_2$                         | ш                            | 10.154(5)               |                                                                                                                                   | CuO <sub>3</sub> N      | μΟ 1.879(8,5)      | 3.305(2)                                                   | 0,0    | 92.4(4,2.7)              | 158  |
| (blue)                                                         | P21/n                        | 12.712(4)               | 99.05(6)                                                                                                                          |                         | µac0 1.942(9,23)   | 3.435(3)                                                   |        | 174.7(4,2)               |      |
|                                                                | 7                            | 15.405(9)               |                                                                                                                                   |                         | N 2.02(1,1)        | 3.370                                                      | Z<br>O | 87.8(4,2.1) <sup>c</sup> |      |
|                                                                |                              |                         |                                                                                                                                   |                         |                    | 132.1(4)                                                   |        | 159.8(4)                 |      |
|                                                                |                              |                         |                                                                                                                                   |                         |                    |                                                            |        | 173.4(4)                 |      |
| $[Cu_4(\mu-dmap)_3(\mu-ac)_2(\mu-OH)(ac) \cdot$                | tr                           | 13.289(6)               | 97.29(4)                                                                                                                          | CuO4N (×1)              | μHO 1.92(1)        | 3.149(3)                                                   | 0'0    | 92.5(4,6)                | 158  |
| (H <sub>2</sub> O)](PF <sub>6</sub> ) <sub>2</sub> (dark blue) | P-1                          | 15.737(6)               | 96.24(4)                                                                                                                          |                         | μacO 1.97(1)       | 3.695(3)                                                   |        | 173.8(5)                 |      |
|                                                                | 2                            | 13.214(5)               | 103.77(3)                                                                                                                         |                         | μO 1.970(9)        | 3.461                                                      | 0,N    | 87.6(5,5) <sup>c</sup>   |      |
|                                                                |                              |                         |                                                                                                                                   |                         | N 2.02(1)          | 112.9(5,2.6)                                               |        | 176.4(5)                 |      |
|                                                                |                              |                         |                                                                                                                                   |                         | acO 2.68(2)        | 139.7(5,4)                                                 |        |                          |      |
|                                                                |                              |                         |                                                                                                                                   | $CuO_3N_2$ (×2)         | µac0 1.97(1,1)     |                                                            | 0,0    | 92.5(5,2.0)              |      |
|                                                                |                              |                         |                                                                                                                                   |                         | $\mu 0 1.97(1,2)$  |                                                            |        | 169.1(5,3.0)             |      |
|                                                                |                              |                         |                                                                                                                                   |                         | N 2.00(1,1)        |                                                            | N,O    | 80.0(5,7)                |      |
|                                                                |                              |                         |                                                                                                                                   |                         | 2.42(1,1)          |                                                            |        | 89.2(5,6.9)              |      |
|                                                                |                              |                         |                                                                                                                                   |                         |                    |                                                            |        | 167.2(5,1.8)             |      |
|                                                                |                              |                         |                                                                                                                                   |                         |                    |                                                            | Z<br>Z | 112.1(6,2.3)             |      |
|                                                                |                              |                         |                                                                                                                                   | CuO4N (×1)              | μHO 1.92(1)        |                                                            | 0'0    | 92.5(4,1.3)              |      |
|                                                                |                              |                         |                                                                                                                                   |                         | µac0 1.94(1)       |                                                            |        | 173.0(4)                 |      |
|                                                                |                              |                         |                                                                                                                                   |                         | μΟ 1.95(1)         |                                                            | Z<br>O | 87.1(5,1.4) <sup>c</sup> |      |
|                                                                |                              |                         |                                                                                                                                   |                         | N 2.01(1)          |                                                            |        | 168.9(5)                 |      |
|                                                                |                              |                         |                                                                                                                                   |                         | $H_2O 2.47(1)$     |                                                            |        |                          |      |
|                                                                |                              |                         |                                                                                                                                   |                         |                    |                                                            |        |                          |      |
|                                                                |                              |                         |                                                                                                                                   |                         |                    |                                                            |        |                          |      |

TABLE III (Continued)

| $[Cu_4(\mu-dmap)_2(\mu-ac)_3(\mu-OH) \cdot (\mu-OH_2)]PF_6 (blue)$ | r<br>P-1                                      | 13.40(2)<br>14.009(7)<br>11.729(9) | 113.65(4)<br>95.73(9)<br>74.81(7) | CuO4N                           | μHO<br>μacO | 1.91(1,1)<br>1.99(1,1)<br>2.45(2,1) | 2.998(5)<br>4.739(4)<br>3.785 | 0'0     | 87.9(6,1.8)<br>95.9(6,10.0)<br>168.3(6,1.2) | 158 |
|--------------------------------------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------|---------------------------------|-------------|-------------------------------------|-------------------------------|---------|---------------------------------------------|-----|
|                                                                    |                                               |                                    |                                   |                                 | οjΖ         | 2.00(1,2)<br>2.01(2,2)              | 74.4(5,1.9)<br>105.3(6,1.8)   | N,O     | 86.6(7,3.0) <sup>c</sup><br>101.9(7,1.1)    |     |
|                                                                    |                                               |                                    |                                   | C.O.N                           | OH"         | (1 1)20 1                           | (c,/)I.96I                    | Ċ       | 170.2(7,6)<br>90 7/6 1 8)                   |     |
|                                                                    |                                               |                                    |                                   | ~ r*                            | uac0        | 1.99(1.2)                           |                               | )<br>)  | 171.2(6.4.0)                                |     |
|                                                                    |                                               |                                    |                                   |                                 | Q           | 2.01(1,2)                           |                               | N,<br>O | 87.5(7,2.2) <sup>c</sup>                    |     |
|                                                                    |                                               |                                    |                                   |                                 | $\mu H_2O$  | 2.44(1,7)                           |                               |         | 100.2(6,1)                                  |     |
|                                                                    |                                               |                                    |                                   |                                 | Z           | 2.00(2,1)                           |                               |         | 176 7(7,1.0)                                |     |
| [Cu(µ-bc)(py)]₄ · 2MeCN                                            | or                                            | 13.395(5)                          |                                   | CuO <sub>3</sub> N              | 011         | 1.941(8,22)                         | 3.152(1)                      | 0,0     | 87.2(4,2.5) <sup>c</sup>                    | 159 |
| (brown)                                                            | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> | 24.287(11)                         |                                   |                                 | 0           | 1.891(9,42)                         | 3.572(1)                      |         | 171.0(4,4.4)                                |     |
|                                                                    | 4                                             | 24.918(11)                         |                                   |                                 | DyN         | 2.007(11,17)                        | 3.377                         | N<br>0  | 92.1(4,6.3)                                 |     |
|                                                                    |                                               |                                    |                                   |                                 |             |                                     | Not given                     |         | 171.3(4,7.8)                                |     |
| [Cu(μ-pysad)(H <sub>2</sub> O)]₄(NO <sub>3</sub> )₄                | tg                                            | 14.83(2)                           |                                   | CuO <sub>3</sub> N <sub>2</sub> | Oή          | 1.968(6,3)                          | 3.077(2)                      | 0,0     | 74.4(3)                                     | 160 |
| (green brown)                                                      | $P4_{2}2_{1}2$                                |                                    |                                   |                                 | Z           | 2.006(8,31)                         | 4.259(2)                      |         | 87.1(3)                                     |     |
|                                                                    | 7                                             | 13.58(2)                           |                                   |                                 | $H_2O$      | 2.225(10)                           | 3.502                         | Ω,Ο     | 96.2(3,5.5)                                 |     |
|                                                                    |                                               |                                    |                                   |                                 |             |                                     | 102.9(3)                      |         | 150.5(3)                                    |     |
|                                                                    |                                               |                                    |                                   |                                 |             |                                     |                               |         | 173.5(2)                                    |     |
|                                                                    |                                               |                                    |                                   |                                 |             |                                     |                               | Z,<br>Z | 96.2(3)                                     |     |
| $[Cu_4(\mu-deaH)_2(\mu-dea)_2](ClO_4)_2$ .                         | E                                             | 24.703(14)                         |                                   | CuN <sub>3</sub> O (×2)         | μdeaN       | 1.97(1,7)                           | 3.334(3)                      | Z,Z     | 84.9(5) <sup>c</sup>                        | 161 |
| H <sub>2</sub> O (black green)                                     | C2/c                                          | 5.887(5)                           | 126.50(4)                         |                                 | μdeaHO      | 1.93(1)                             | 3.847(3)                      | 0<br>Z  | 85.7(5,6) <sup>c</sup>                      |     |
|                                                                    | 4                                             | 28.998(15)                         |                                   |                                 | µdeaHN      | 1.90(2)                             | 3.591                         |         |                                             |     |
|                                                                    |                                               |                                    |                                   |                                 |             |                                     | Not given                     |         |                                             |     |
|                                                                    |                                               |                                    |                                   | $CuO_2N_2$ (×2)                 | µdeahO      | 1.89(1)                             | )                             | Z,Z     | 82.9(6) <sup>c</sup>                        |     |
|                                                                    |                                               |                                    |                                   |                                 | µdeaO       | 1.91(1)                             |                               | 0,0     | 89.7(5)                                     |     |
|                                                                    |                                               |                                    |                                   |                                 | udeaN       | 1.99(1,7)                           |                               | Ζ,Ο     | 101.2(6)                                    |     |
| $[Cu_4(\mu-deaH)_2(\mu-dea)_2](ClO_4)_2$                           | В                                             | 12.627(4)                          |                                   | CuN <sub>3</sub> O (×2)         | μdeaHO      | 1.873(8)                            | 3.329(1)                      | Z,Z     | 84.8(3) <sup>c</sup>                        | 161 |
| (black green)                                                      | $P2_{1/n}$                                    | 7.344(2)                           | 90.38(2)                          |                                 | μdeaHN      | 1.934(7)                            | 3.861(1)                      | 0,N     | 85.3(3,1.9) <sup>c</sup>                    |     |
|                                                                    | 7                                             | 22.250(9)                          |                                   |                                 | μdeaN       | 1.979(8,75)                         | 3.595                         |         |                                             |     |
|                                                                    |                                               |                                    |                                   |                                 |             |                                     | Not given                     |         |                                             |     |

| TABLE III (Continued)                                                                                                                                             |                                |                                     |                                                                                                                    |                                                                              |                                                                                                   |                                                                                                   |                                                            |                                       |                                                                                                   |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|------|
| Compound (colour)                                                                                                                                                 | Cryst. cl.<br>space gr.<br>Z   | a (Å)<br>b (Å)<br>c (Å)             | $egin{array}{c} lpha \left( ^{ m c}  ight) \ eta \left( ^{ m c}  ight) \ \gamma \left( ^{ m c}  ight) \end{array}$ | Chromophore                                                                  | Cn                                                                                                | - <i>L</i> (Å)                                                                                    | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | 7                                     | <i>Cu</i> - <i>L</i> (°)                                                                          | Ref. |
| [Cu(μ-Mepz) <sub>2</sub> (μ-Meacpz)(NO <sub>3</sub> ) <sub>2</sub> ]<br>(dark blue)                                                                               | m<br>P2 <sub>1</sub> /n<br>2   | 11.245(3)<br>13.690(4)<br>13.553(5) | 109.31(3)                                                                                                          | CuO <sub>2</sub> N <sub>2</sub> (×2)<br>CuO <sub>3</sub> N <sub>2</sub> (×2) | $\begin{array}{c} \mu dea HO\\ \mu dea O\\ \mu dea N\\ \mu acp ZO\\ \mu p ZN\\ O_2 NO\end{array}$ | 1.9096(7)<br>1.917(6)<br>2.000(8,9)<br>1.924(3)<br>1.924(3)<br>1.948(4,6)<br>1.991(4)<br>2.572(5) | 3.3174(8)<br>5.106(1)<br>4.058<br>Not given                | ΧΟΟΧΟ Ο<br>ΧΟΧΧΟ Χ                    | 83.1(3)°<br>90.3(3)<br>101.1(3)<br>99.0(2)<br>54.0(2)<br>90.9(1)<br>88.3(2,1.3)                   | 162  |
|                                                                                                                                                                   |                                |                                     |                                                                                                                    | CuN <sub>3</sub> O (×2)                                                      | μacpzO<br>μpzN                                                                                    | 1.926(3)<br>1.943(4,12)                                                                           |                                                            | N,N<br>N,O                            | 159.7(2,3.9)<br>95.1(2,1.0)<br>169.2(2)<br>84.9(2,2.9)                                            |      |
| [Cu(µ-imp)(NO <sub>3</sub> )], · 8H <sub>2</sub> O<br>(dark green)                                                                                                | tg<br>14 <sub>1</sub> /a<br>4  | 19.334(4)<br>15.257(13)             |                                                                                                                    | CuN <sub>3</sub> O <sub>2</sub>                                              | impN<br>impO<br>0 <sub>2</sub> NO                                                                 | 1.95(1,0)<br>1.96(1)<br>2.81(2)                                                                   | 3.435(4)<br>4.456(4)<br>4.116                              | N N N N N N N N N N N N N N N N N N N | 1.0.1(2)<br>80.7(5) <sup>6</sup><br>112.6(6,6.6)<br>165.7(6,4.8)<br>86.6(6,6.2)                   | 163  |
| [Cu(µ-ppt)(H <sub>2</sub> O)] <sub>4</sub> (NO <sub>3</sub> ) <sub>4</sub> · 12H <sub>2</sub> O<br>(dark green)                                                   | tg<br>14 <sub>1</sub> /a<br>16 | 18.868(3)<br>18.936(2)              |                                                                                                                    | CuN4O                                                                        | µpptN<br>H <sub>2</sub> O                                                                         | 2.004(2,36)<br>2.289(2)<br>1.951(2)                                                               | 4.2686(4)<br>4.3195(5)<br>4.2941                           |                                       | 76.6(1)<br>76.6(1)<br>90.9(1,10.9)<br>105.9(1)<br>02.8(1 0)                                       | 164  |
| [Cu <sub>2</sub> {µ-S <sub>2</sub> C <sub>3</sub> (NCH <sub>2</sub> CH <sub>2</sub> OH) <sub>2</sub> } ·<br>(H <sub>2</sub> O)SO4]{µ-OH) <sub>2</sub> } 2 (green) | т<br>С2/с<br>8                 | 24.211(6)<br>8.173(5)<br>15.179(6)  | 110.68(2)                                                                                                          | CuO <sub>3</sub> NS (×2)                                                     | 0<br>N<br>S<br>O <sub>5</sub> SO<br>O <sub>4</sub> H <sub>0</sub>                                 | 2.052(3)<br>1.947(3)<br>2.300(1)<br>1.949(3)<br>2.487(3)                                          | 3.999(1)<br>5.648(1)<br>4.650                              | S,N<br>O,O<br>S,O                     | 86.4(1) <sup>6</sup><br>86.8(1) <sup>6</sup><br>80.8(1) <sup>6</sup><br>87.9(1,8)<br>100.9(1,2.2) | 165  |
|                                                                                                                                                                   |                                |                                     |                                                                                                                    | CuO <sub>3</sub> NS (×2)                                                     | οz                                                                                                | 2.061(3)<br>1.950(3)                                                                              |                                                            | N,S<br>N O,                           | 87.0(1) <sup>c</sup><br>82.5(1) <sup>c</sup>                                                      |      |

|                                                                                                               |            |                        |           |                           | S<br>H-O          | 2.286(1)<br>1 958(3)         |                       | 00     | 106.9(1)<br>90.1(1.2.0)                 |     |
|---------------------------------------------------------------------------------------------------------------|------------|------------------------|-----------|---------------------------|-------------------|------------------------------|-----------------------|--------|-----------------------------------------|-----|
|                                                                                                               |            |                        |           |                           | 02Hμ              | 2.300(3)                     |                       | S,0    | 97.4(1,9)                               |     |
| [Cu(µ-im)(tac)]4(ClO4)4<br>2H-O (deen blue)                                                                   | m<br>P2,/c | 15.088(4)<br>14.430(3) | 102.05(2) | CuN5                      | himN<br>tacN      | 1.985(14,30)<br>2.064(14.30) | 5.891(3)<br>5.987(3)  | Z,Z    | 81.4(6,1.6) <sup>c</sup><br>92.4(6,1-2) | 166 |
|                                                                                                               | 5          | 14.713(5)              |           |                           |                   | 2.234(15,1)                  | 5.923                 |        | 106.2(6,3.1)                            |     |
|                                                                                                               |            |                        |           |                           |                   |                              | Not given             |        | 169.3(6,4.4)                            |     |
| $[Cu_4(\mu-im)_2(\mu-bpim)_2(NO_3)_3]$                                                                        | tg         | 27.204(10)             |           | CuN₄O <sub>2</sub> (×2)   | µbpimN            | 2.007(5)                     | 5.911(2)              | Z,0    | 84.5(-,5.0)                             | 167 |
| $(H_2O)](NO_3) \cdot 2H_2O$ (deep blue)                                                                       | $I4_1/a$   |                        |           |                           |                   | 2.040(5,50)                  | 8.628(2)              |        | 95.0(-,5.0)                             |     |
|                                                                                                               | 8          | 14.704(6)              |           |                           | μimN              | 1.969(5)                     | 6.725                 | 0,0    | 165.4(-)                                |     |
|                                                                                                               |            |                        |           |                           | $H_2O$            | 2.428(7)                     | Not given             | Z,Z    | 85.5(2,4.0) <sup>c</sup>                |     |
|                                                                                                               |            |                        |           |                           | 0 <sup>2</sup> NO | 2.734(6)                     |                       |        | 94.4(2,4)                               |     |
|                                                                                                               |            |                        |           |                           |                   |                              |                       |        | 172.0(2,3.7)                            |     |
|                                                                                                               |            |                        |           | $CuN_4O_2(\times 2)$      | $\mu$ bpimN       | 1.992(5)                     |                       | Ζ<br>Ο | 83.4(-,2.8) <sup>c</sup>                |     |
|                                                                                                               |            |                        |           |                           | bimN              | 2.028(5,25)                  |                       |        | 96.0(-,5.5)                             |     |
|                                                                                                               |            |                        |           |                           | <b>N</b> min      | 1.964(5)                     |                       | 0,0    | 166.7(-)                                |     |
|                                                                                                               |            |                        |           |                           | 0v20              | 2.587(6)                     |                       | Z,Z    | 80.9(2) <sup>c</sup>                    |     |
|                                                                                                               |            |                        |           |                           |                   | 2.840(14)                    |                       |        | 93.1(2,5.0)                             |     |
|                                                                                                               |            |                        |           |                           |                   |                              |                       |        | 170.5(21.6)                             |     |
| $[Cu_2(\mu_3-OH)(\mu-C_{19}H_{21}N_6O)]$                                                                      | Ħ          | 14.67(1)               |           | $CuO_3N_2$ (×2)           | $\mu_{3}HO$       | 1.937(5)                     | 3.047(2) <sup>e</sup> | Z,Z    | 93.9(2) <sup>d</sup>                    | 168 |
| (H <sub>2</sub> O)] <sub>2</sub> (BF <sub>4</sub> ) <sub>2</sub> SiF <sub>6</sub> · 0.84H <sub>2</sub> O      | C2/c       | 22.23(1)               | 125.13(2) |                           |                   | 2.516(5)                     | 100.6(2,2.7)          | 0'N    | 96.8(2,5.1)                             |     |
| (not given)                                                                                                   | 8          | 19.18(1)               |           |                           | 01                | 1.969(6)                     | 114.2(2)              |        | 165.8(2,3.9)                            |     |
|                                                                                                               |            |                        |           |                           | z                 | 1.952(8,13)                  |                       | 0,0    | 79.2(2,1.6)                             |     |
|                                                                                                               |            |                        |           |                           |                   |                              |                       |        | 93.7(2)                                 |     |
|                                                                                                               |            |                        |           | $CuO_3N_2$ (×2)           | 0H <sub>€</sub> ⁄ | 1.971(5)                     |                       | Z,Z    | 93.5(2) <sup>d</sup>                    |     |
|                                                                                                               |            |                        |           |                           | 0 <sup>1</sup>    | 1.970(6)                     |                       | 0<br>X | 95.4(2,4.1)                             |     |
|                                                                                                               |            |                        |           |                           | Z                 | 1.957(7,1)                   |                       |        | 167.7(2,1.5)                            |     |
|                                                                                                               |            |                        |           |                           | $H_2O$            | 2.334(8)                     |                       | 0,0    | 76.8(2)                                 |     |
|                                                                                                               |            |                        |           |                           |                   |                              |                       |        | 92.0(2,2.6)                             |     |
| $[\operatorname{Cu}_2(\mu\operatorname{-dip})\operatorname{Cl}_2]_2\cdot 2\operatorname{H}_2\operatorname{O}$ | ш          | 11.646(5)              |           | CuN <sub>3</sub> OCI (x2) | μdipN             | 1.990(4,5)                   | 4.423(2) <sup>e</sup> | C,N    | 94.8(1)                                 | 169 |
| (dark green)                                                                                                  | $P2_{1/n}$ | 22.831(8)              | 90.6(2)   |                           |                   | 2.401(6)                     |                       |        | 105.6(1)                                |     |
|                                                                                                               | 4          | 9.172(5)               |           |                           | Odibu             | 1.968(3)                     |                       |        | 158.8(1)                                |     |
|                                                                                                               |            |                        |           |                           | U                 | 2.241(2)                     |                       | 0 X    | 82.0(1,7.9)                             |     |
|                                                                                                               |            |                        |           |                           |                   |                              |                       |        | 169.7(1)                                |     |
|                                                                                                               |            |                        |           |                           |                   |                              |                       | Z<br>Z | 80.4(1)                                 |     |

| Compound (colour)                                                                                                                                                                          | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)               | $lpha \left( egin{smallmatrix} lpha \left( egin{smallmatrix} eta \left( eta  ight) \\ \gamma \left( eta  ight) \end{array}  ight)$ | Chromophore                                                                     | Cu-                                                   | -7 (Ų)                                                                                            | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | $T^{-}$               | Cu-L (°)                                                                             | Ref. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|------|
|                                                                                                                                                                                            |                              |                                       |                                                                                                                                    | CuN4CI (×2)                                                                     | µdipN<br>Cl                                           | 1.990(4,41)<br>2.472(4)                                                                           |                                                            | X C C C               | 55.4(1)<br>110.2(1)<br>22.9(1)<br>27.1(1,6.4)<br>34.3(1,5.2)<br>(04.5(1)<br>(04.5(1) |      |
| [Cu <sub>4</sub> (µ-paa) <sub>2</sub> (bipyam) <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub> ·<br>Cl <sub>2</sub> ](NO <sub>3</sub> ) <sub>2</sub> · MeOH · 10H <sub>2</sub> O (dark green) | tr<br>P-1<br>2               | 13.825(6)<br>14.034(6)<br>19.231(5)   | 92.23(3)<br>98.89(5)<br>98.47(6)                                                                                                   | CuO <sub>3</sub> N <sub>2</sub> (×2)<br>CuO <sub>2</sub> N <sub>2</sub> Cl (×2) | μpaaO<br>N<br>H <sub>2</sub> O<br>μpaaO               | 1.95(5)<br>2.30(2)<br>2.01(2,4)<br>2.29(2)<br>1.95(5)<br>7.34(2)                                  | 4.585(2)°                                                  |                       | Vot given                                                                            | 170  |
| [Cu(µ-C12H24N4O2)]3 <sup>.</sup><br>[Cu(µ-C12H24N4O2)]4(NO3)4 (pale blue)                                                                                                                  | P-1<br>1                     | 12.426(1)<br>13.405(1)<br>15.605(2)   | 102.35(1)<br>105.34(1)<br>113.74(1)                                                                                                | CuN <sub>4</sub> (×2)<br>CuO <sub>3</sub> N <sub>2</sub> (×2)                   | ZOZ ZO                                                | 2.01(2,4)<br>2.29(1,3)<br>1.980(7,44)<br>1.982(7,5)<br>1.994(5,12)                                | 5.395(1) <sup>e</sup>                                      | N,N<br>9 0,0<br>9 7 9 | 0.5(2,6.8)<br>67.9(2,5.7)<br>8.9(1) <sup>c</sup><br>7.4(2,6.3)                       | 20   |
| [Cu4(µ-inp)2(phen)4(H2O)4] · (NO3)2 ·<br>14H2O (dark green)                                                                                                                                | or<br>C2221<br>8             | 18.823(6)<br>24.513(10)<br>40.253(20) |                                                                                                                                    | CuO4<br>CuN4<br>CuN3O2 (×2)                                                     | $\mu O$<br>$\mu N$<br>$\mu N$<br>$\mu_2 O$<br>$H_2 O$ | 2.244(5)<br>see Table I<br>(trimer)<br>1.956(10,3)<br>2.017(12,4)<br>2.011(12,13)<br>2.183(11,14) | Not given                                                  | 6 Z<br>O Z<br>Z       | 13.7(2,10.7)<br>67.6(2,3.4)<br>13.3(2) <sup>d</sup><br>Aot given                     | 171a |

TABLE III (Continued)

| 2011       |
|------------|
| January    |
| 23         |
| 14:40      |
| At:        |
| Downloaded |

|                                                                    | 1716                                                                                                                                                       |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Not given                                                          | Not given                                                                                                                                                  |
|                                                                    | Not given                                                                                                                                                  |
| O 1.939(13,10)<br>N 2.010(13,9)<br>N 2.010(14,20)<br>O 2.229(12.7) | Not given                                                                                                                                                  |
| phen H                                                             | ſ                                                                                                                                                          |
| CuN <sub>3</sub> O <sub>2</sub> (×2)                               | CuO <sub>3</sub> N <sub>2</sub>                                                                                                                            |
|                                                                    | 95.58(2)                                                                                                                                                   |
|                                                                    | 12.705(4)<br>25.279(8)<br>12.985(3)                                                                                                                        |
|                                                                    | то 12<br>Б2                                                                                                                                                |
|                                                                    |                                                                                                                                                            |
|                                                                    | [Cu <sub>4</sub> (µ-adpH) <sub>2</sub> (bpy) <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub> ·<br>(NO <sub>3</sub> ) <sub>2</sub> ] · 2NO <sub>3</sub> (blue) |

Where more than one chemically equivalent distance or angle is present the mean value is tabulated. The first number in parenthesis is e.s.d., the second is maximum deviation from the mean value. <sup>b</sup>The chemical identity of coordination atom/ligand is specified in these columns. <sup>c</sup>Five-membered metallocyclic ring. <sup>d</sup>Six-membered metallocyclic ring. <sup>c</sup>Calculated by us. <sup>f</sup>Four-membered metallocyclic ring.



FIGURE 6 Structure of  $[Cu(\mu_3-deae)(NCO)]_4$ .<sup>108</sup>

six-coordinate<sup>99,111,122,123,127-130</sup> and five- plus six-coordinate sub-site coordination.<sup>126,132-134</sup> The Cu–Cu separations in these cubic frameworks range from 3.094(4) to 4.024(6) Å (mean 3.43 Å) suggesting an absence of metalmetal bonding. The Cu–O–Cu bridge angles range from 85° to 112.5° with a mean of 97.5°. The mean Cu–L terminal bond distance increases in the sequence: 1.915 Å (NL) < 2.16 Å (OL) < 2.24 Å (Cl) < 2.38 Å (Br). The mean Cu–O (bridge) bond distance is 2.21 Å. In the series of hetero donor ligands, O plus N; O plus S; two O plus N; O plus 2N donor sites *only O atoms* serve as bridge with mean Cu–O bond distance 2.23 Å.

# 3.3 Bifolded Dimers

In Table IIIB are summarized crystallographic and structural data for thirteen tetrameric units formed by bifolded dimers. In a black derivative<sup>135</sup>

two chlorine atoms bridge binuclear species Cu(salen)CuCl<sub>2</sub>. The copper(II) atoms bonded by the organic ligands are four-coordinate (CuO<sub>2</sub>N<sub>2</sub>) with a planar donor stereochemistry, the remaining copper atoms are five-coordinate with the ligands in a distorted square-pyramidal geometry (CuCl<sub>3</sub>O<sub>2</sub>). The Cu-Cu separations of 3.109 and 3.439 Å ruled out a metal-metal bond. The structure of a green complex,  $Cu_4(\mu$ -Cl)<sub>6</sub>(terpy)<sub>2</sub>Cl<sub>2</sub>,<sup>136</sup> consists of a discrete neutral tetrameric unit formed by slightly bifolded [Cu<sub>2</sub>Cl<sub>6</sub>]<sup>2-</sup> dimers stacked between two planar [Cu(terpy)Cl]<sup>+</sup> entities. The coordination geometry around each copper(II) atom is square-pyramidal (Table IIIB).

In another three examples (red)<sup>137,138</sup> the  $Cu_4Cl_{10}^{2-}$  anion exists as a discrete dibridged tetrameter. The structure of another red derivative<sup>139</sup> consists of discrete  $Et_4N^+$  cations and  $Cu_4Cl_{12}^{4-}$  anions. The centrosymmetric anions contain copper(II) atoms in two distinct coordination geometries, the central pair of copper(II) atoms have 4 + 1 coordination while the outer pair have a distorted tetrahedral geometry. The central pair are joined by two symmetrical Cu-Cl-Cu bridges with bridging bond angles of 96.35°. One symmetrical Cu-Cl-Cu bridge and one asymmetrical Cu-Cl-Cu bridge link each outer copper(II) atom to a central atom. The bridging angles are 95.51° and 88.30°, respectively.

In a dark violet derivative<sup>140</sup> the  $Cu_4Br_{10}^{2-}$  anion exists as a discrete dibridged tetramer where the copper(II) atoms assume a nearly square-planar geometry.

The structure of a green complex,  $Cu_4(\mu$ -OCMe<sub>3</sub>)<sub>6</sub>{OC(CF<sub>3</sub>)<sub>3</sub>}<sub>2</sub>,<sup>141</sup> consists of three  $Cu_2O_2$  linked twisted rings with bridging OCMe<sub>3</sub> groups and two terminal OC(CF<sub>3</sub>)<sub>3</sub> groups, where the central Cu(II) atoms are four-coordinate and the two outer Cu(II) atoms are three-coordinate. The CuO<sub>3</sub> moieties are Y-shaped, and the interior CuO<sub>4</sub> moieties are compressed tetrahedra.

## 3.4 Chain Structures

The molecule  $[Cu_4(\mu_3-OH)_3(mpi)_4O]^{142}$  contains two square-planar and two trigonal-bipyramidal Cu(II) atoms, each coordinated to three nitrogen atoms of the tridentate mpi ligand and linked in a linear array by three bridging hydroxyl groups. In addition a single oxygen atom, located on a pyridil  $\alpha$  carbon of the mpi ligand is distributed nonstatistically over the linear tridentate ligands (Table IIIC).

In a deep green derivative<sup>143</sup> two symmetry independent copper(II) atoms in the centrosymmetric tetrameric complex are five-coordinate with



FIGURE 7 Schematic outline of the  $Cu_4(\mu$ -sed)<sub>2</sub>(hfacac)<sub>4</sub>.<sup>143</sup>

distorted square-pyramidal geometries. The two inner copper(II) atoms bridged by the salicylaldimine oxygen, are close to each other (3.176(1) Å), whereas the outer copper(II) atoms are separated by considerable distances (> 6 Å) from the other metal centers in the structure (Figure 7).

A dark green complex<sup>144</sup> forms a centrosymmetric molecule made up of two units of  $[Cu(\mu-salpd)(\mu-ac)Cu]$  bridged by a pair of methoxo groups. Each terminal copper(II) atom forms four short bonds with N and O donor atoms of sapd and a slightly longer bond with one oxygen of the acetato groups. Each inner copper(II) atom is also pyramidally coordinated by two methoxo oxygens, one of the acetato oxygens, and one of the bridging salpd oxygens (Table IIIC).

The structure of a pale brown complex<sup>145</sup> is composed of two halves related by a center of symmetry located at the center of the CuOCuO parallelogram. Each half of the molecule contains a dicopper unit where the metal atoms are bridged by the ligand and two acetate ions. There are two nonequivalent pairs of Cu(II) atoms, the inner are square-pyramidal (CuO<sub>5</sub>) and the outer are trigonal-bipyramidal (CuO<sub>3</sub>N<sub>2</sub>). The Cu–Cu distance within the dimeric moiety is 3.303(1) Å. The distance is longer than the Cu– Cu distance (3.053(1) Å) between the two dimeric units.

## 3.5 Step-like Structures

There are seven derivatives  $^{110,146-150}$  where a step-like structure of the tetramers is formed (Table IIID). A green derivative  $^{146a}$  consists of two dimeric

units related by inversion symmetry and held together by an oxygenbridging donor atom. Thus the complex should be considered as a tetramer with a step-like geometry of the central core, containing both four- and fivecoordinate copper(II) atoms.

In a dark green derivative<sup>146b</sup> two dimeric moieties,  $Cu_2(OH)(dfmph)$ , related by the center of symmetry are bridged by two hydroxide groups and as a result form a tetrameric structure in a stepped geometry. The molecule of a blue derivative<sup>147</sup> consists of two approximately planar benzoxybridged dimers (acac)Cu( $\mu$ -OCH<sub>2</sub>Ph)<sub>2</sub>Cu(acac), joined together by apical Cu–O bonds of length 2.42 Å. The coordination of the copper(II) atoms (CuO<sub>5</sub>) is approximately square-pyramidal.

A step-like structure of a dark brown complex<sup>148</sup> is formed by two dimeric subunits which are inverted by a center of symmetry (Figure 8). The subunits are asymmetrically bridged dimeric moieties with a phenolate and an arido bridge. There are two pairs of copper(II) atoms, tetragonal-bipyramidal (CuN<sub>4</sub>O<sub>2</sub>) and square-pyramidal (CuN<sub>4</sub>O).



FIGURE 8 Structure of [Cu<sub>2</sub>(N)<sub>3</sub>(md)(ClO<sub>4</sub>)<sub>2</sub>]<sub>2</sub>.<sup>148</sup>
A light blue derivative<sup>96b</sup> is also a step tetramer. The  $Cu_4O_4$  core was described in terms of two interacting methoxy-bridged dimers of  $Cu_2(MeO)_2(dpm)_2$  (Table IIID).

Another green complex<sup>150</sup> also involves pairs of dimeric units in a stepped geometry. Each copper(II) atom has a square-pyramidal environment (CuO<sub>3</sub>N<sub>2</sub>) with displacement of the copper(II) atom from the basal plane (O<sub>2</sub>N<sub>2</sub>) by 0.126 and 0.179 Å.

## 3.6 Unique Structures

Crystallographic and structural data for unique tetrameric derivatives are summarized in (Table IIIE). In the structure of a green derivative<sup>151</sup> there are four square-pyramidally coordinated copper(II) atoms, which are connected by four bridging carboxylate groups of isonicotinato-N-oxide, by two  $\mu_3$ -hydroxide groups, and by one bridged bidentate sulfate group, with the Cu<sub>4</sub>O<sub>4</sub>S cage in the center of the structure and a Cu-Cu distance of 2.855(6) Å.

Another tetrameric derivative<sup>152</sup> contains four methoxide bridges, four 7-azaindolate bridges and two coordinated dimethylformamide molecules. Two kinds of Cu(II) atoms were found in the structure, one with square-pyramidal geometry (CuO<sub>3</sub>N<sub>2</sub>) and the other with square-planar geometry (CuO<sub>2</sub>N<sub>2</sub>). The Cu–Cu distances are 2.999(1) and 3.014(1) Å.

Violet  $Cu_4(\mu \text{-mob})_2(py)_4^{153}$  consists of two binuclear copper(II) triketonate-type moieties linked through 1,3-substitutions on phenyl rings. The Cu–Cu separation within a dimeric unit is 3.021(1) Å and the closest Cu– Cu distance between the dimeric units is 6.9 Å. Each copper(II) atom is bounded to four ketonate oxygens and one pyridine nitrogen in typical square-pyramidal geometry. The O–Cu–N angles deviate from 90° (av. 97°) due to the copper(II) atoms residing out of the ligand plane an average of 0.21 Å in the direction of the pyridine.

The structure of  $[Cu_4(\mu-tnl)(\mu-OH)_2((H_2O)_8]^{6+154}$  is shown in Figure 9. The structure represents a unique arrangement in which four squarepyramidal copper(II) atoms are grouped in two pairs on opposite sides of the benzodipyridazine fragment, and within each dimeric unit the coppers are bridged equatorially by the diazine N<sub>2</sub> group and a hydroxide. Two water molecules complete the copper coordination sphere with a O<sub>2</sub>N<sub>2</sub> in plane donor set. The copper(II) atom is displaced from the O<sub>2</sub>N<sub>2</sub> plane by 0.055(3) Å, towards the axial water molecule.

A green derivative<sup>71</sup> contains a non-planar  $Cu_4(\mu-N_3)_2$  core. The  $\mu$ -azido ligands lie on either side of the macrocyclic plane. The two independent



FIGURE 9 Structure of  $[Cu_4(\mu-tnl)(\mu-OH)_2(H_2O)_8]^{6+.154}$ 

copper(II) atoms have different coordination environments, square-planar and square-pyramidal with displacement of Cu(II) by 0.2 Å from the mean plane.

The structure of the dark green complex<sup>155</sup> may be considered as a pair of dimeric  $\{Cu(\mu-fptsc)^+\}_2$  units linked by a  $P_2O_7^{4-}$  anion,  $(LCu)_2-OP(O)_2-OP(O)_2O-(CuL)_2$ . The dimeric units are further linked by Cu–S axial bonds. These axial bonds range in length from 2.852(3) to 2.895(3) Å and result in a Cu–Cu separation within  $(CuL^+)_2$  dimers of 3.231(2) and 3.288(2) Å.

A crystal structure of a green compound<sup>156</sup> is comprised of centrosymmetric tetrameric molecules in which copper(II) atoms are linked by carboxylate bridges and by triply-bridging OH groups. Each of the two crystallographically independent Cu(II) atoms is coordinated to four oxygen atoms and a quinoline nitrogen atom in a distorted square-pyramidal configuration. The displacements of copper(II) atoms from their basal coordination planes are 0.151 and 0.174 Å, respectively.

In  $[Cu(bc)(py)]_4^{157}$  four Cu(II) atoms are connected by  $\mu_3$ -O and  $\mu$ -O of bc ligands with Cu-Cu distances ranging from 3.08(1) to 3.68(1)Å. There are two pairs of nonequivalent Cu(II) atoms that are four- and five-coordinate (Table IIIE).

In another three blue derivatives<sup>158</sup> a planar twelve-membered ring is formed by four copper(II) atoms, two oxygen atoms from the dmap ligands, and two  $CO_2$  groups. The four copper(II) atoms have an approximate rectangular arrangement.

A brown complex<sup>159</sup> exhibits four square-planar Cu(II) centers, each bonded to two oxygens of a chelating catecholate, a pyridine nitrogen and a bridging oxygen from a neighboring catecholate. The Cu-Cu distances range from 3.152(1) to 3.572(1)Å.

Four copper(II) atoms in a green-brown complex<sup>160</sup> are situated in an almost square arrangement with two independent Cu–Cu distances of 3.077(2) and 3.171(2)Å. The tridentate Schiff base ligand (N-2-pyridil-salicylaldiminate) is coordinated to three different copper(II) atoms, the phenolic oxygen bridging two of the atoms, while the pyridine nitrogen atom is coordinated to the third. A water molecule occupies the axial position of a distorted square-pyramidal coordination sphere about the Cu(II) atom. The copper(II) is located 0.25 Å above the weighted least-squares plane and is displaced towards the axial water molecule.

Two black-green derivatives<sup>161</sup> are basically similar, consisting of centrosymmetric tetrameric complex cations. The Cu(II) atoms have a square-planar coordination environment in which each ligand is bound to Cu(II) through its amino and oxime nitrogen atoms. There are two pairs of crystallographically independent Cu(II) atoms with coordination spheres of CuN<sub>3</sub>O and CuO<sub>2</sub>N<sub>2</sub>, respectively. The complex moieties themselves are nearly planar.

A dark blue derivative<sup>162</sup> appears to be tetrameric with  $C_i$  symmetry. The structure is built up by four copper(II) atoms, arranged at the corners of a parallelogram, with side lengths of 3.3174(8) and 3.4159(8) Å and angles of 81.38(2)° and 98.62(2)°. All sides are bridged by 3(5)-methylpyrazolate ligands. The short sides are additionally bridged by oxygen atoms of the 1-(1-ethanoyl)-5-methylpyrazolate ligand.

A dark green cluster<sup>163</sup> consists of four copper(II) atoms at the vertices of a flattened tetrahedron with Cu–Cu separations of 3.435(4) and 4.456(4) Å. Each copper(II) is in a distorted square-pyramidal environment consisting of three nitrogen atoms and one oxygen atom from the N,N'-imidopicolinyl-oxamylhydrazin, and an apical oxygen from a nitrate group.

The structure of a dark green derivative<sup>164</sup> consists of four copper(II) atoms at the vertices of a slightly distorted tetrahedron with four ligands bridging the edges of the tetrahedron and four coordinated water molecules. The coordination geometry around the copper(II) atoms is a distorted square-pyramid (CuN<sub>4</sub>O). The tetrameric unit has two different Cu–Cu distances, 4.2686(4) and 4.3195(5) Å, respectively.

The structure of a green complex<sup>165</sup> consists of dimeric units  $[Cu_2-{\mu-S_2C_2(NCH_2CH_2OH)_2}(H_2O)(SO_4)]$  doubly bridged by water molecules making tetrameric entities. The coordination of each copper is 4 + 1 in the form of a square pyramid, the apex of which is occupied by an oxygen atom of the bridging water molecule.

In a deep blue derivative<sup>166</sup> each of the four (tac)Cu units is coordinated *via* two imidazolate anions to two (tac)Cu units, yielding four distorted square-pyramidal CuN<sub>5</sub> polyhedra. The four copper(II) atoms which lie on a plane form an approximate parallelogram with sides of 5.891(3) and 5.987(3)Å.

In a deep blue derivative<sup>167</sup> the tetrameric cation of two Cu<sub>2</sub>bpim<sup>3+</sup> units is joined by two bridging imidazole ligands and has a crystallographically required two-fold axis. Three N atoms of the bpim ligand (Cu-N = 1.99– 2.09 Å) and one N of the im ion (Cu-N = 1.967(5) Å) form the principal copper coordination plane. Axial sites are occupied by water and nitrate O atoms (Table IIIE). The four Cu(II) atoms lie within  $\pm 0.36$  Å of the best plane through them and form an approximate parallelogram of sides 6.214(2) Å (within the Cu<sub>2</sub>bpim<sup>3+</sup> group) and 5.911(2) Å (between the Cu<sub>2</sub>bpim<sup>3+</sup> groups).

In another derivative<sup>168</sup> two Cu(II) atoms are bridged by the OH group and by the oxygen atom of the multidentate  $C_{19}H_{21}N_6O$  ligand; the four N atoms of the ligand complete a roughly square-planar coordination about the two Cu(II) atoms. Each Cu(II) atom has an additional axial ligand, a water molecule in the case of Cu(B) and, in the case of Cu(A), the hydroxyl oxygen from a neighboring dimeric species related by a diad.

The main features of a dark green derivative<sup>169</sup> are the presence of two nonequivalent copper(II) atoms and the octadentate behavior of the dip ligand. There are two coordination polyhedra quite different in geometry, even though the copper(II) atoms are both five-coordinate in distorted square-pyramidal arrangements. For Cu(1) the basal corners of the pyramid are occupied by a chloride, two nitrogen atoms from dip and an oxygen atom from an adjacent dip molecule, while a nitrogen atom from the same adjacent ligand is at the apex. The Cu(2) environment is more regular and involves four nitrogen atoms from the same dip molecule at the base and a chloride in an apical position. In both cases the atoms forming the base of the pyramid are not coplanar, but tetrahedrally arranged with the copper(II) atoms displaced from the mean plane, forward the apex, by 0.24 and 0.25 Å, respectively.

An X-ray structure of a dark green derivative<sup>170</sup> reveals that the compound is tetrameric with four square-pyramidally coordinated copper(II) atoms, two paa moieties and four bipyam ligands. The basal sites for the two Cu(1) atoms are occupied by two bipyam nitrogens, one phenolic oxygen and one carboxylate oxygen. The axial position is filled by a water molecule. On the other hand, for the two Cu(2) atoms the phenolic oxygen at the basal site is replaced by a chloride and a 5-hydroxymethyl oxygen of the pyridoxic acid occupies the axial position. The pyridoxic acid moiety bridges three copper(II) atoms in both a mono- and bidentate fashion.

A pale blue crystal<sup>50</sup> consists of tricopper and tetracopper dications packed together in a 1:1 ratio and placed around inversion centers. The tricopper cation was discussed in Section 2. The tetracopper cation contains two inner square-pyramidal CuO<sub>3</sub>N<sub>2</sub> units and two outer CuN<sub>4</sub> square units (Table IIIE).

There are almost thirty tetrameric derivatives (Table IIIE) whose structures are complex. The predominant geometry about copper(II) is square-pyramid, with some examples<sup>158,159,161</sup> of square-planar and one example<sup>167</sup> in which copper(II) atoms are in a *pseudo*-octahedral environment.

A summary of the data in Table IIIB-E reveals that the mean Cu-L lengths increase in the sequences: monodentate L; 2.05 Å (NL) < 2.27 Å (Cl) < 2.315 Å (OL) < 2.38 Å (Br); bidentate L; 1.975 Å (NL) < 2.02 Å (OL); bridging  $\mu$ -L; 1.95 Å (OH) < 2.03 Å (OL) < 2.22 Å (NL) < 2.33 Å (Cl) < 2.44 Å (Br); bridging  $\mu_3$ -L; 2.08 Å (OL) < 2.26 Å (NL).

Both steric and electronic factors associated with the donor atom appear to influence the L-Cu-L bond *angles are five-membered* rings, 82.5° (Ndonor) <  $85.4^{\circ}$  (O+N-donor) <  $86.5^{\circ}$  (N+S-donor) <  $87^{\circ}$  (O-donor); six-membered rings, 90.5° (O-donor) < 91.0° (N-donor) < 95.0° (O+Ndonor).

There are over one hundred and thirty tetrameric Cu(II) derivates (Tables II and III). The predominate geometry about copper(II) is a square-pyramidal. Several distinct type of cores are found with a cubane-type the most common.

A summary of the mean Cu-L bond distances for tetrameric derivatives is given in Table IV. In general the mean Cu-L (monodentate) bond distances are somewhat longer than those of Cu-L (bridge) increasing in the

| Coord. atom        | Cov. rad. (Å) | Cu-L(Å)     | Coord. atom      | Cu–L (Å)    |
|--------------------|---------------|-------------|------------------|-------------|
| LO                 | 0.73          | 2.32(50,53) | $L < \mu_3 O$    | 2.22(20,68) |
| L <sup>2</sup> O   |               | 2.02(13,43) | Ň                | 2.06(8,5)   |
| L⁰O                |               | 1.93(4,4)   | $L < \mu_3 O$    | 2.18(24,27) |
| $\mu$ OH           |               | 1.95(6,5)   | S                | 2.33(1,1)   |
| μOL                |               | 2.03(17,45) | $L < \mu_3(O)_2$ | 2.28(36,45) |
| $\mu_3 OH$         |               | 2.08(20,44) | N                | 1.93(1,1)   |
| $\mu_3 OL$         |               | 2.21(27,35) | $L < \mu_3 O$    | 2.28(33,26) |
| $\mu_4 \text{ OH}$ |               | 2.10(2,3)   | 2N               | 2.00        |
| LN                 | 0.75          | 1.99(10,32) | $L < \mu O$      | 2.04(16,36) |
| L <sup>2</sup> N   |               | 1.97(1,4)   | 2N               | 2.04(7,38)  |
| L <sup>3</sup> N   |               | 2.05(10,18) | 0                | 2.05        |
| L <sup>8</sup> N   |               | 2.00(4,3)   | $L \leftarrow S$ | 1.95        |
| $\mu_3 NL$         |               | 2.27        | Ν                | 2.29        |
| CI                 | 0.99          | 2.25(4,22)  | $L < \mu(O)_2$   | 2.07        |
| μCl                |               | 2.39(17,28) | 2N               | 1.90        |
| Br                 | 1.14          | 2.39(2,2)   | $L > \mu O$      | 1.94        |
| $\mu$ Br           |               | 2.49(9,9)   | 4N               | 1.97        |

TABLE IV Summary of the mean Cu(II)-L bond distances for tetrameric derivatives<sup>a</sup>

<sup>a</sup>The first number in parentheses is the difference between the shortest value and the mean, the second number is the difference between the highest value and the mean.

order:  $\mu$ -L <  $\mu_3$ -L <  $\mu_4$ -L; and the mean Cu–L (terminal) bond distances are somewhat shorter than those of Cu–L (bridge) bond distances.

## 4 PENTAMERIC COPPER(II) COMPOUNDS

Crystallographic and structural data for pentameric copper(II) compounds are given in Table V.

The structure of  $[Cu_5(OH)_2(ac)_6(H_2O)_2(imH)_4]^{2+}$  is shown in Figure 10. In the centrosymmetric complex, the coordination geometries of the Cu(1), Cu(2) and Cu(3) centers are square-pyramidal, tetragonally elongated octahedral and square-planar, respectively. The Cu(1)–Cu(2), Cu(1)–Cu(3) and Cu(2)–Cu(3) distances are 3.178(1), 3.578(1) and 3.043(1)Å, respectively. While the Cu(1) and Cu(3) centers are bonded to two  $\mu$ -acetate ligands, the Cu(2) atom is bonded to four such ligands and two  $\mu_3$ -OH groups. In the Cu<sub>3</sub>O moiety, the O(7) atom is displaced 0.579(4)Å from the plane of the copper atoms. The imidazole coordinates as a terminal ligand to the Cu(1) and Cu(3) atoms. The pentameric units are linked symmetrically by  $\mu$ -aqua bridges to give an intra-chain, inter-unit Cu–Cu separation of 4.507(1)Å.

In another pentameric derivative<sup>173</sup> four peripheral copper(II) atoms form an almost planar structure and the central copper(II) atom is 0.4 Å above this plane. There are twelve five- and six-membered rings with

|                                                                                                                                                                             | IADL                         | E V CIJSIA                          | nugraphic a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | וו או שנו שנו שנו שנו שנו שנו שנו    | a rur pentar                                  | intro cobhei(in)                          | compounds                                                  |                  |                                                                                   |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------|-------------------------------------------|------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------|------|
| Compound (colour)                                                                                                                                                           | Cryst. cl<br>space gr.<br>Z  | a (Å)<br>b (Å)<br>c (Å)             | $egin{array}{c} lpha \left(  ight) \ eta \left(  ight) \ eta \left(  ight) \ \gamma \left(  ight) \ lpha \left(  ight) \ \gamma \left(  ight) \ lpha \left(  ight) \ \lpha \left(  ight) \ \lph$ | Chromophore                          | C                                             | (-7 (ỷ)                                   | Cu–Cu (Å)<br>shortest<br>longest<br>average<br>Cu–L–Cu (°) | <i>L</i> -       | Cu-L (°)                                                                          | Ref. |
| [Cu <sub>5</sub> (µ <sub>3</sub> -OH) <sub>2</sub> (µ-ac) <sub>6</sub> (H <sub>2</sub> O) <sub>2</sub> .<br>(imH) <sub>4</sub> ]ClO <sub>4</sub> ) <sub>2</sub> (not given) | T<br>C2/c<br>4               | 26.889(4)<br>11.077(3)<br>18.936(2) | 134.07(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CuO <sub>6</sub> (×1)                | μ <sub>3</sub> ΗΟ <sup>b</sup><br>μacO        | 2.023(2,0)<br>1.971(5,6)<br>2.268(6,0)    | 3.043(1)<br>3.578(1)<br>3.266<br>117.7(1.19.0)             | 0,0 <sup>b</sup> | 87.5(2,3.1)                                                                       | 172  |
|                                                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CuO <sub>3</sub> N (×2)              | μ <sub>3</sub> HO<br>μacO<br>N                | 1.971(4)<br>1.941(4,19)<br>1.972(6)       |                                                            | 0,0<br>N,0       | 90.0(1)<br>88.0(2,1.3)<br>177.0(2)                                                |      |
|                                                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CuO4N (×2)                           | μ <sub>2</sub> HO<br>μacO<br>H <sub>2</sub> O | 1.980(2)<br>1.971(5,6)<br>2.425(2)        |                                                            | 0,0<br>0,N       | 86.3(1,3.6)<br>90.8(1,2.9)<br>167.2(2)                                            |      |
| [Cu <sub>5</sub> (ahd)4](CIO <sub>4</sub> ) <sub>2</sub><br>5H <sub>2</sub> O (not given)                                                                                   | tr<br>P-1<br>2               | 10.568(2)<br>11.800(2)<br>13.742(3) | 94.49(2)<br>110.58(3)<br>99.81(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CuO4 (×1)                            | 01                                            | 1.911(4,32)                               | 3.221(2)<br>4.368(2)<br>3.935<br>117.7(2,6.1)              | 0,0              | 90.0(2,1.1)<br>172.2(2,4.5)                                                       | 173  |
|                                                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CuO <sub>2</sub> N <sub>2</sub> (×4) | Q O Z                                         | 1.922(4,49)<br>1.950(4,12)<br>1.971(5,22) |                                                            | 0,N N,O          | 81.5(2,7) <sup>c</sup><br>93.6(2,1.4) <sup>c</sup><br>92.3(2,3.8)<br>171.0(2,7,1) |      |
| Cu <sub>5</sub> (OH) <sub>2</sub> (mppc) <sub>2</sub> (NO <sub>3</sub> )4 ·<br>2.5H <sub>2</sub> O (green)                                                                  | m<br>P2 <sub>1</sub> /n<br>4 | 15.559(3)<br>13.417(3)<br>24.638(3) | 99.03(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CuO <sub>5</sub> (×1)                | 02NO                                          | 1.933(5,16)<br>2.660(5)                   | 3.27<br>5.78<br>3.99<br>120 7(- 9)                         | 0,0              | 85.2(2,3)°<br>89.7(2,4.7)<br>105.5(2,2)                                           | 174  |
|                                                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $CuO_4N_2(\times 2)$                 | On<br>N N OH#                                 | 1.987(4,12)<br>2.035(7,40)<br>1.892(5.7)  |                                                            | 0'0<br>N'N       | 85.8(2,8.4)<br>156.4(2)<br>73.4(2,4) <sup>c</sup>                                 |      |
|                                                                                                                                                                             |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | 02N0                                          | 2.607(5,91)<br>2.811(12,124)              |                                                            | N,O              | 93.5(2,4) <sup>d</sup><br>98.1(2,10.6)<br>164.9(2,6.3)                            |      |

TABLE V Crystallographic and structural data for pentameric copper(II) compounds<sup>4</sup>

Downloaded At: 14:40 23 January 2011

| n from | aximum deviatio          | second is m | hesis is e.s.d., the | st number in parent                     | lated. The fir                                    | mean value is tabul                  | e is present the | listance or angle      | cally equivalent | <sup>a</sup> Where more than one chemi                    |
|--------|--------------------------|-------------|----------------------|-----------------------------------------|---------------------------------------------------|--------------------------------------|------------------|------------------------|------------------|-----------------------------------------------------------|
|        | Not given                |             |                      | 1.932(8,23)<br>2.011(9,33)<br>2.20(1,3) | acacU<br>btaN <sub>eq</sub><br>btaN <sub>ap</sub> | CuN <sub>3</sub> O <sub>2</sub> (×4) |                  |                        |                  |                                                           |
|        | Not given                |             | 109.5(1,7.8)         | 1.932(8,23)                             | acacO                                             | CuN <sub>3</sub> O <sub>2</sub> (×4) | ·                |                        |                  |                                                           |
|        |                          |             | 5.068                | 2.471(9)                                | devi                                              |                                      | (0)+41.04        | (7)020777<br>17.497(1) | 1/11<br>4        |                                                           |
| 175    | Not given                |             | 3.615(2)             | 2.046(9,17)                             | btaN <sub>eq</sub>                                | $CuN_6$ (×1)                         |                  | 16.038(1)              | E                | [Cu <sub>5</sub> (bta) <sub>6</sub> (acac) <sub>4</sub> ] |
|        | 165.1(2,4.8)             |             |                      |                                         |                                                   |                                      |                  |                        |                  |                                                           |
|        | 97.9(2,11.9)             |             |                      | 2.724(15,102)                           | O <sub>2</sub> NO                                 |                                      |                  |                        |                  |                                                           |
|        | 95.2(2,1.3) <sup>d</sup> | 0,N         |                      | 2.577(7,5)                              | μO <sub>2</sub> NO                                |                                      |                  |                        |                  |                                                           |
|        | 73.5(2,2) <sup>c</sup>   | Z,Z         |                      | 1.895(5,10)                             | ноπ                                               |                                      |                  |                        |                  |                                                           |
|        | 159.2(2,1.1)             |             |                      | 2.022(7,40)                             | Z                                                 |                                      |                  |                        |                  |                                                           |
|        | 85.7(2,10.4)             | 0,0         |                      | 1.980(5,6)                              | Qή                                                | $CuO_4N_2$ (×2)                      |                  |                        |                  |                                                           |

the mean value. <sup>b</sup>The chemical identity of coordination atom/ligand is specified in these columns. <sup>c</sup>Five-membered metallocyclic ring. <sup>d</sup>Six-membered metallocyclic ring.



FIGURE 10 Structure of [Cu<sub>5</sub>(OH)<sub>2</sub>(ac)<sub>6</sub>(H<sub>2</sub>O)<sub>2</sub>(imH)<sub>4</sub>]<sup>2+.172</sup>

different conformations. The distances between the central and peripheral copper(II) atoms vary from 3.221(2) to 3.315(2) Å. The distances between peripheral copper(II) atoms are in the range 4.565(2)-4.638(2) Å.

In a green derivative<sup>174</sup> five copper(II) atoms are arranged as a rectangular-based pyramid. The overall molecule results from the association of two dimeric units, which are linked by the two OH groups and the fifth copper(II) atom. From the approximate  $C_{2v}$  symmetry of the pentameric cluster it follows that the four lateral sites are equivalent while the apical one is unique. Each catechol ligand binds two Cu(II) atoms through two piperazine nitrogens and a catecholate oxygen. The fourth equatorial ligand is a OH group. The coordination of the "apical" copper atom contrasts with the four others since it is roughly a square pyramid with the copper 0.19 Å, outof the plane of the four catecholate oxygens. This displacement results from the interaction of the copper with a nitrate oxygen (Cu–O = 2.660(5) Å).

The structure of a compound with green prismatic crystals<sup>175</sup> is shown in Figure 11. The pentameric copper(II) assembly consists of a distorted tetrahedral arrangement of four copper atoms (Cu(2)-Cu(5)) centered on the fifth copper (Cu(1)); the cube which envelopes this arrangement is



FIGURE 11 Structure of [Cu<sub>5</sub>(bta)<sub>6</sub>(acac)<sub>4</sub>].<sup>175</sup>

identified in the figure. Each of the six bta(-) ligands spans an edge of the  $Cu_4$  tetrahedron and is ligated to the central copper atom (Cu(1)) through its central nitrogen atom. The Cu-Cu distances between the central Cu(1) atom and the peripheral (Cu(2)-Cu(5)) range from 3.165(2) to 3.715(2) Å, and the distances between peripheral copper atoms range from 5.740(2) to 6.126(2) Å.

# 5 HEXAMERIC COPPER(II) COMPOUNDS

There are twelve hexameric copper(II) compounds for which crystallographic and structural data are summarized in Table VI. A green-black derivative<sup>12</sup> is a centrosymmetric hexameric molecule containing two equivalent  $Cu_3O$  units, the central oxygens of which are bonded to a copper from the other  $Cu_3O$ . The central oxygens of the  $Cu_3O$  groups are very flattened tetrahedra, whose apices point along the Cu–O bonds linking the two  $Cu_3O$  units.

The structure of a dark blue derivative<sup>176</sup> is composed of centrosymmetrical hexameric molecules located at the inversion center (0, 0, 0) (Figure 12). The Cu(II) atoms are linked by triply-bridging ethanolato oxygen atoms and OH<sup>-</sup> groups, and by carboxylato and ethanolato oxygen bridges. The three independent copper(II) atoms have a square-pyramidal coordination. Cu(2) and Cu(3) are 0.69 and 0.68 Å above their least-squares basal planes towards the apical oxygen atoms as compared to 0.121 Å for Cu(1). All these planes have the triply-bridging oxygen atom of the hydroxo group in common.

The structure of a blue derivative<sup>177</sup> is built up from centrosymmetric complexes and disordered  $H_2O$ 's which link the hexamers into chains along a. The Cu(II) atoms are linked by triply-bridging ethanolato O atoms and OH groups, and by carboxylato and ethanolato O bridges.

The structure of  $Cu_6(4-Brbz)_6(dmae)_6(H_2O)_2^{178}$  is composed of three dimers, which are bridged into a hexameric unit by carboxyl oxygen atoms. Within the  $Cu_2O_2$  dimeric units the bridging Cu-O-Cu angles are 98.(2)° (mean). The coordination around the four Cu(II) atoms is distorted octahedral, while the remaining two coppers are five-coordinate in a distorted square-pyramidal environment (Table VI).

The overall molecule<sup>179</sup> (Figure 13) has approximate  $C_2$  symmetry in which the different copper(II) atoms associate into pairs: Cu(1) and Cu(4), Cu(2) and Cu(5), Cu(3) and Cu(6). The two tricopper units are linked through the phenoxy oxygen O(4) bridging Cu(1) and Cu(4) and the chloride anion Cl(1) which bridges Cu(2) and Cu(5). Every copper(II) atom is in a tetragonal environment (Table VI).

A molecule of another triclinic derivative<sup>180</sup> consists of three roughly planar methoxo-bridged dimeric units; a centrosymmetric "dimer" with average Cu–O of 1.94(1)Å and Cu–O–Cu of 99.5(3)° within the Cu<sub>2</sub>O<sub>2</sub> bridging group, and two different Cu–O–Cu angles, 96.9(3)° and 102.8(3)°. The dimers are joined by axial copper–oxygen bonds. The geometry around the copper atoms is approximately square-pyramidal.

In a blue derivative<sup>181</sup> the complex cation has a  $Cu_6O_8$  core formed by alternating copper(II) and alkoxo oxygen atoms. There is a cubane-like  $Cu_4O_4$  subcore. Two of six faces of the sub-core (the top and bottom) are capped by copper atoms. The capping copper atoms lie on the four-fold

|                                                                                                                                                   | TABLE VI                     | Crystallo                           | graphic and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l structural data f                  | or hexam                                      | eric copper(II)                                            | compounds <sup>a</sup>                                       |                    |                                                                          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|--------------------|--------------------------------------------------------------------------|------|
| Compound (colour)                                                                                                                                 | Cryst. cl.<br>space gr.<br>Z | a (ỷ)<br>b (Å)<br>c (Å)             | $egin{array}{c} lpha \ eta \ eta \ lpha \ \lpha \ lpha \ \lpha \ \ \lpha \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | Chromophore                          | Cu-                                           | - <i>L</i> (Å)                                             | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°)   |                    | L-Cu-L (°)                                                               | Ref. |
| [Cu <sub>3</sub> (C <sub>15</sub> H <sub>13</sub> N <sub>4</sub> O <sub>2</sub> ) <sub>3</sub> (ClO <sub>4</sub> )] <sub>2</sub><br>(green black) | m<br>P2 <sub>1</sub> /n<br>2 | 14.036(6)<br>19.449(5)<br>17.131(9) | 97.62(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuO <sub>3</sub> N <sub>2</sub> (×4) | 0 <sup>μ</sup><br>0<br>Ν                      | 1.872(2,18)<br>1.978(2,22)<br>1.988(3,11)<br>2.581(3.247)  | 2.828(1)<br>3.415(1)<br>3.157<br>116.5(1.1.1)                | ¶0`0<br>0`0<br>0`0 | 95.1(1,1.4)<br>80.2(1,1.0) <sup>6</sup><br>92.5(1,3.0)<br>168.1(1.1.2)   | 12   |
|                                                                                                                                                   |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CuO <sub>3</sub> N <sub>3</sub> (×2) | ο <sup>3</sup> Clo N<br>03Clo N               | 1.860(2)<br>1.958(3)<br>1.980(3,9)<br>2.585(3)             |                                                              | 0 N N<br>O N O     | 92.9(1)<br>81.3(1) <sup>c</sup><br>92.8(1,1.8)<br>173.1(1,1.4)           |      |
| [Cu <sub>3</sub> (μ-2-Clpr)(2-Clpr)2(μ <sub>3</sub> -OH) ·<br>(μ <sub>3</sub> deae)(deae)(H <sub>2</sub> O)]2 (dark blue)                         | н<br>Р-1                     | 10.712(7)<br>12.914(4)<br>13.295(7) | 73.74(4)<br>67.57(4)<br>85.35(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CuO4N (×2)                           | Ν<br>μ <sub>3</sub> ΗΟ<br>ClprO<br>μΟ         | 2.062(12)<br>1.929(8)<br>2.004(8)<br>1.925(10)<br>2.349(9) | 2.891<br>6.433<br>4.151<br>$\mu_3$ 92.7(3)<br>107.4(4)       | 0,0<br>0,N         | 93.9(4,9.6)<br>163.8(4)<br>84.3(4) <sup>6</sup><br>90.6(4,2)<br>175.1(4) | 176  |
|                                                                                                                                                   |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                                               |                                                            | 129.8(4)<br>$\mu$ 87.5(3)<br>95.1(3)<br>118.9(3)<br>127.2(5) |                    |                                                                          |      |
|                                                                                                                                                   |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CuO4N (×2)                           | N<br>О <sub>б</sub> щ<br>ОНщ                  | 2.054(10)<br>1.922(6)<br>1.984(7)                          |                                                              | 0'0                | 79.7(3)<br>91.8(3,5.5)<br>176.9(3)                                       |      |
|                                                                                                                                                   |                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CuO <sub>5</sub> (×2)                | ClprO<br>H <sub>2</sub> O<br>μ <sub>3</sub> O | 1.931(7)<br>2.469(11)<br>1.920(9)<br>1.995(8)<br>2.301(8)  |                                                              | 0'0                | 94.4(3,5.8)<br>164.9(4)<br>77.3(3)<br>92.9 (3,2.8)<br>169.7(3,1.9)       |      |

Downloaded At: 14:40 23 January 2011

| Compound (colour)                                                                                                                       | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å) | $egin{array}{c} lpha \ eta  | Chromophore             | Č                                                                                                                                                              | - <i>T</i> (Å)                                      | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) |     | L-Cu-L (°)                                             | Ref. |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|-----|--------------------------------------------------------|------|
| Cu <sub>6</sub> (µ <sub>3</sub> -OH) <sub>2</sub> (µ-ac) <sub>2</sub> (ac) <sub>4</sub> .<br>(1deaa).(1.deae).(H.O) (hlue)              | ب<br>1<br>1                  | 9.070(6)<br>11 944(6)   | 107.23(5)<br>96.94(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CuO4N (×2)              | μ <sub>3</sub> HO<br>ClprO<br>N                                                                                                                                | 2.013(6)<br>1.941(9)<br>2.063(14)                   | 2.926(4)<br>6.487(6)                                       | 0,0 | 77.4(6,4.2)<br>90 3(7 7)                               | 177  |
| (he accord) (1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1                                                                                      | -                            | 13.081(9)               | 76.76(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | $0.000 \text{ H}_{\text{E}}$                                                                                                                                   | 1.919(10)                                           | 66.2                                                       | O,N | 87.1(5)<br>87.1(4) <sup>6</sup>                        |      |
|                                                                                                                                         |                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CuO4N (×2)              | H <sub>2</sub> O<br>N                                                                                                                                          | 2.274(31)<br>2.079(14)                              | 130.4                                                      | 0,0 | 96.4(7,3.4)<br>168.5(4)<br>93.6(5,7.8)                 |      |
|                                                                                                                                         |                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | ac0<br>0,000                                                                                                                                                   | 2.367(13)<br>1.964(14)<br>1.937(11)                 |                                                            | 0'N | 164.9(5)<br>84.2(5)<br>91.1(5.1.9)                     |      |
|                                                                                                                                         |                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CuO <sub>6</sub> (×2)   | $\begin{array}{c} \mu_{3}HO\\ acO\\ \mu_{3}O\\ \mu_{3}HO\end{array}$                                                                                           | 1.999(11)<br>1.938(13)<br>1.968(11,19)<br>2.048(10) |                                                            | 0,0 | 173.5(5)<br>77.7(7,2.1)<br>93.8(6,6.8)<br>168.2(8,2.9) |      |
| [Cu <sub>6</sub> (µ.4-Brbz) <sub>2</sub> (4-Brbz) <sub>4</sub> ·<br>(µ.4mae) <sub>6</sub> (H <sub>2</sub> O) <sub>2</sub> ] (not given) | tr<br>P-1                    | 10.897(4)<br>12.496(6)  | 69.33(4)<br>95.59(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CuO <sub>5</sub> N (×2) | 0 <sup>4</sup><br>0 <sup>7</sup><br>0 <sup>7</sup><br>0 <sup>7</sup><br>0 <sup>7</sup><br>0 <sup>7</sup><br>0 <sup>7</sup><br>0 <sup>7</sup><br>0 <sup>7</sup> | 2.369(10)<br>2.595(24)<br>1.936(5,20)<br>2.060(8)   | 2.942(2,46)<br>98.8(2,3.3)                                 | 0,0 | 49.8(2) <sup>d</sup><br>78.7(2)                        | 178  |
|                                                                                                                                         | -                            | 16.260(11)              | 102.00(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | Ozdμ<br>Ozdμ                                                                                                                                                   | 2.575(7)<br>1.924(5)                                |                                                            |     | 94.7(2,5.7)<br>132.7(2,7.1)                            |      |
|                                                                                                                                         |                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                                                                                                                                                | (1)776.7                                            |                                                            | C,N | 85.3(2) <sup>5</sup><br>94.9(4,5)                      |      |

Downloaded At: 14:40 23 January 2011

TABLE VI (Continued)

|                                                                                          |     |            |           | $CuO_5N(\times 2)$      | Oμ                        | 1.928(6,8)   |                         | 0,0    | 56.2(2) <sup>d</sup> |     |
|------------------------------------------------------------------------------------------|-----|------------|-----------|-------------------------|---------------------------|--------------|-------------------------|--------|----------------------|-----|
|                                                                                          |     |            |           |                         | Z                         | 2.067(9)     |                         |        | 79.1(2)              |     |
|                                                                                          |     |            |           |                         | 0zqπ                      | 1.972(5)     |                         |        | 96.2(2,18.5)         |     |
|                                                                                          |     |            |           |                         |                           | 2.571(7)     |                         |        | 155.3(2)             |     |
|                                                                                          |     |            |           |                         | $H_2O$                    | 2.700(6)     |                         | ς<br>Ο | 84.9(2) <sup>c</sup> |     |
|                                                                                          |     |            |           |                         |                           |              |                         |        | 99.6(2,2.0)          |     |
|                                                                                          |     |            |           | $CuO_4N(\times 2)$      | 0 <sup>71</sup>           | 1.921(7,14)  |                         | 0,0    | 54.5(2) <sup>d</sup> |     |
|                                                                                          |     |            |           |                         | Z                         | 2.017(9)     |                         |        | 77.9(3)              |     |
|                                                                                          |     |            |           |                         | Ozqri                     | 1.942(6)     |                         |        | 100.5(2,1.5)         |     |
|                                                                                          |     |            |           |                         |                           | 2.651(5)     |                         | N,O    | 83.9(3) <sup>c</sup> |     |
|                                                                                          |     |            |           |                         |                           |              |                         |        | 96.9(3,1.4)          |     |
| $[Cu_6(\mu_3-OH)_2(\mu_3-dbae)_2$                                                        | tı  | 10.414(7)  | 109.96(6) | $CuO_4N(\times 2)$      | $\mu_3 HO$                | 2.005(5)     | 3.037                   | 0,0    | 83.7(2)              | 178 |
| $(\mu$ -Cl <sub>2</sub> ac) <sub>2</sub> (Cl <sub>2</sub> ac) <sub>2</sub> ] (not given) | P-I | 13.884(9)  | 106.76(5) |                         | $\mu_3$ dbaeO             | 1.941(6)     | 3.608                   |        | 91.7(2,2.0)          |     |
|                                                                                          |     | 15.806(9)  | 78.21(6)  |                         | Z                         | 2.059(7)     | 3.265                   | N,O    | 87.1(3)              |     |
|                                                                                          |     |            |           |                         | $\mu$ Cl <sub>2</sub> acO | 1.922(7)     | $\mu_3$ HO 101.6(3,1.8) |        | 95.8(2,6)            |     |
|                                                                                          |     |            |           |                         |                           | 2.360(5)     | 130.4(3)                |        |                      |     |
|                                                                                          |     |            |           |                         |                           |              | $\mu_{3}O 87.7(2,7)$    |        |                      |     |
|                                                                                          |     |            |           |                         |                           |              | 118.7(3)                |        |                      |     |
|                                                                                          |     |            |           |                         |                           |              | $\mu$ O 120.6(3)        |        |                      |     |
|                                                                                          |     |            |           | CuO4N (×2)              | $\mu_3 HO$                | 2.003(5)     |                         | 0,0    | 88.6(2)              |     |
|                                                                                          |     |            |           |                         | $\mu$ dbaeO               | 1.935(7)     |                         |        | 94.0(2,4.8)          |     |
|                                                                                          |     |            |           |                         | Z                         | 2.041(6)     |                         | Ω,0    | 85.9(3)              |     |
|                                                                                          |     |            |           |                         | $\mu$ Cl <sub>2</sub> acO | 2.331(5)     |                         |        | 91.0(3.3)            |     |
|                                                                                          |     |            |           |                         | Cl,acO                    | 1.944(7)     |                         |        |                      |     |
|                                                                                          |     |            |           | $CuO_{5}(\times 2)$     | OHεμ                      | 1.972(5)     |                         | 0,0    | 72.3(2)              |     |
|                                                                                          |     |            |           |                         | $\mu_{z}$ dbaeO           | 1.964(5)     |                         |        | 92.1(2.3.8)          |     |
|                                                                                          |     |            |           |                         |                           | 2.438(6)     |                         |        | 111.7(2)             |     |
|                                                                                          |     |            |           |                         | $\mu$ Cl,acO              | 1.982(6)     |                         |        | ~                    |     |
| $\{Cu_3(\mu_3-OH)(\mu-bsmnp)(dmf)\}_{2}$ .                                               | tı  | 13.288(10) | 102.96(6) | CuO <sub>5</sub> N (×2) | OHru                      | 1.981(5,12)  | 2.946(2)                | 0,0    | 60.28-135.96(18)     | 179 |
| $(\mu$ -Cl) $(\mu$ -bsmnp)] · 2dmf (green)                                               | l-d | 14.678(7)  | 89.07(7)  | ,<br>,                  | 01                        | 1.931(5,38)  | 3.994(3)                |        | 167.7(1,4.4)         |     |
|                                                                                          | 5   | 22.591(23) | 113.15(5) |                         |                           | 2.534(6,43)  | 3.197                   | 0,N    | 92.1(1,1.1)          |     |
|                                                                                          |     |            |           |                         |                           | 2.884(6,153) | $\mu_3$ HO 100.6(2,5.9) |        | 117.8(1,15.8)        |     |
|                                                                                          |     |            |           |                         | Z                         | 1.927(7,18)  | $\mu O 93.0(2,1)$       |        | 169.1(1,4.0)         |     |
|                                                                                          |     |            |           |                         |                           |              | 126.3(3)                |        |                      |     |
|                                                                                          |     |            |           |                         |                           |              | C1 102.13(12)           |        |                      |     |
|                                                                                          |     |            |           |                         |                           |              |                         |        |                      |     |

| Compound (colour)                                                                                          | Cryst. cl.<br>space gr.<br>Z | a (ỳ)<br>b (ỳ)<br>c (ỳ) | α (°)<br>β (°)<br>γ (°) | Chromophore             | Ğ                  | -T (Å)                     | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | 1          | L-Cu-L (°)                 | Ref. |
|------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|-------------------------|-------------------------|--------------------|----------------------------|------------------------------------------------------------|------------|----------------------------|------|
|                                                                                                            |                              |                         |                         | CuO4NCI (×2)            | 04<br>04           | 1.955(5,4)<br>1.941(5,19)  |                                                            | 0,0        | 64.6(1,1.4)<br>81.8(1,5.5) |      |
|                                                                                                            |                              |                         |                         |                         |                    | 2.045(5,17)<br>2.742(6,75) |                                                            | N,O        | 158.4(1,2)<br>92.9(1,1.3)  |      |
|                                                                                                            |                              |                         |                         |                         | Z                  | 1.902(7,5)                 |                                                            |            | 100.0;164.1                |      |
|                                                                                                            |                              |                         |                         |                         | μCI                | 2.568(3,18)                |                                                            | D C<br>O Z | 99.0(1,4.1)<br>08.4/1_1_0) |      |
|                                                                                                            |                              |                         |                         | CuO <sub>5</sub> N (×2) | $0H_{\ell\mu}$     | 1.942(5,5)                 |                                                            | 00         | 65.38-111.52               |      |
|                                                                                                            |                              |                         |                         |                         | 0 <sup>rd</sup>    | 1.902(6,11)                |                                                            |            | 162.8(1,4.5)               |      |
|                                                                                                            |                              |                         |                         |                         |                    | 2.052(5,19)                |                                                            | 0'N        | 93.3(1,1.2)                |      |
|                                                                                                            |                              |                         |                         |                         |                    | 2.687(6,40)                |                                                            |            | 97.2(1,7.1)                |      |
|                                                                                                            |                              |                         |                         |                         | Z                  | 1.910(7,9)                 |                                                            |            | 167.5(1,1.8)               |      |
|                                                                                                            |                              |                         |                         |                         | Quup               | 2.367(7,26)                |                                                            |            |                            |      |
| [Cu <sub>2</sub> (OMe) <sub>2</sub> (tftbd) <sub>2</sub> ] <sub>3</sub>                                    | н ;                          | 11.212(7)               | 92.71(5)                | CuO <sub>5</sub> (×2)   | μ₃MeO              | 1.963(6)                   | 2.964(2)                                                   | 0'0        | 81.3(3,3.0)                | 180  |
| (not given)                                                                                                | I-4                          | (7)6/0711               | 116.80(5)               |                         |                    | 2.499(7)                   | 99.7(3,4.7)                                                |            | 92.9(3)*                   |      |
|                                                                                                            | -                            | 15.315(9)               | 95.56(5)                |                         | μMeO               | 1.898(6)                   |                                                            |            | 93.3(3,2.0)                |      |
|                                                                                                            |                              |                         |                         |                         | 0                  | 1.944(6,9)                 |                                                            |            | 104.7(3)                   |      |
|                                                                                                            |                              |                         |                         | CuO <sub>5</sub> (×2)   | $\mu_3$ MeO        | 1.942(5,10)                |                                                            | 0,0        | 82.5(3,2.1)                |      |
|                                                                                                            |                              |                         |                         |                         |                    | 2.515(7)                   |                                                            |            | 92.8(3)                    |      |
|                                                                                                            |                              |                         |                         |                         | Q                  | 1.948(6)                   |                                                            |            | 92.6(3,4.9)                |      |
|                                                                                                            |                              |                         |                         |                         | 0                  | 1.923(6)                   |                                                            |            | 103.9(3)                   |      |
|                                                                                                            |                              |                         |                         | CuO <sub>5</sub> (×2)   | μ <sub>3</sub> MeO | 1.918(6,22)                |                                                            | 0,0        | 80.2(3,2.4)                |      |
|                                                                                                            |                              |                         |                         |                         | Q                  | 2.843(7)                   |                                                            |            | 93.4(3)°                   |      |
|                                                                                                            |                              |                         |                         |                         | 0                  | 1.919(6,1)                 |                                                            |            | 97.0(3,3.3)                |      |
| [Cu <sub>6</sub> (µ <sub>3</sub> -amp) <sub>4</sub> (µ-amp) <sub>4</sub> ](ClO <sub>4</sub> ) <sub>4</sub> | tg                           | 13.516(2)               |                         | CuO4N (×4)              | μ <sub>3</sub> Ο   | 1.983(4,28)                | 3.095(1)                                                   | 0'0        | 82.2(2,4.9)                | 181  |
| (blue)                                                                                                     | P-421/c                      |                         |                         |                         |                    | 2.269(5)                   | 3.525(1)                                                   |            | 95.1(2,3.2)                |      |
|                                                                                                            | 7                            | 16.204(3)               |                         |                         | О́́л               | 1.916(4)                   | 3.278                                                      |            | 174.0(2)                   |      |

TABLE VI (Continued)

Downloaded At: 14:40 23 January 2011

|                                                          |                    |           |           |                                      | Z                | 2.038(6)   | $\mu_3 O 97.0(2,6.7)$<br>$\mu O 133.1(3)$ | N<br>O  | 85.0(2)<br>100.7         |     |
|----------------------------------------------------------|--------------------|-----------|-----------|--------------------------------------|------------------|------------|-------------------------------------------|---------|--------------------------|-----|
|                                                          |                    |           |           |                                      |                  |            |                                           |         | 154.2(2)                 |     |
|                                                          |                    |           |           | $CuO_2N_2$ (×2)                      | 0ª               | 1.928(5,0) |                                           | 0,0     | 98.1(2)                  |     |
|                                                          |                    |           |           |                                      | Z                | 1.966(7,0) |                                           | Z<br>Z  | 91.8(3)                  |     |
|                                                          |                    |           |           |                                      |                  |            |                                           | ν,<br>Ο | 85.1(2) <sup>c</sup>     |     |
|                                                          |                    |           |           |                                      |                  |            |                                           |         | 175.9(3)                 |     |
| $[Cu(\mu-phoac)_{2}]_{6}$ (pale green)                   | Ł                  | 30.23(3)  |           | CuO <sub>6</sub> (×6)                | 0                | 1.95(1,4)  | 3.531(3)                                  | 0,0     | 87.5(5,2.2)              | 182 |
|                                                          | R-3                |           |           |                                      |                  | 2.45(1,2)  | 5.65                                      |         | 94.4(5)                  |     |
|                                                          | 4                  | 8.06(1)   |           |                                      |                  |            | 4.59                                      |         | 163.4(5)                 |     |
| $[Cu_6(\mu_4-O)_2(\mu-bibo)_6(H_2O)] \cdot 2ClO_4 \cdot$ | E                  | 15.622(2) |           | $CuO_2N_2$ (×3)                      | р40<br>Н4        | 1.86(1,1)  | Not given                                 | 0,0     | 94.5(5,1.0)              | 13  |
| 0.5H <sub>2</sub> O (green)                              | P2 <sub>1</sub> /n | 27.025(2) | 97.38(2)  |                                      | 0                | 1.95(1,2)  | 91.9(5,2.2)                               | Z<br>Z  | 80.0(6,1.2) <sup>c</sup> |     |
|                                                          | 4                  | 18.864(4) |           |                                      | Z                | 1.99(1,6)  | 111.9(6,7.7)                              | ν<br>Ο  | 92.7(6,3.8)              |     |
|                                                          |                    |           |           | CuO <sub>3</sub> N <sub>2</sub> (×2) | μ4Ο              | 1.88(1,1)  |                                           | 0,0     | 90.0(6,5.3)              |     |
|                                                          |                    |           |           |                                      |                  | 2.33(1,6)  |                                           | Z<br>Z  | 79.9(6,7) <sup>c</sup>   |     |
|                                                          |                    |           |           |                                      | 0                | 1.97(1,0)  |                                           | N<br>O  | 96.3(6,8.7)              |     |
|                                                          |                    |           |           |                                      | z                | 1.99(1)    |                                           |         | 167.3(6,1.3)             |     |
|                                                          |                    |           |           | $CuO_3N_2$ (×1)                      | P40              | 1.89(1)    |                                           | 0,0     | 95.7(6,3.1)              |     |
|                                                          |                    |           |           |                                      | 0                | 1.95(1)    |                                           | Z<br>Z  | 81.4(6) <sup>c</sup>     |     |
|                                                          |                    |           |           |                                      | z                | 1.98(2,1)  |                                           | Z,0     | 91.5(6,5.5)              |     |
|                                                          |                    |           |           |                                      | H <sub>2</sub> O | 2.55(3)    |                                           |         | 170.2(6,7.4)             |     |
| $[Cu_{6}(\mu-OH)_{2}(\mu-ac)_{2}(MeOH)_{2}$ .            | ы                  | 11.283(4) | 81.65(8)  | CuO                                  |                  | Not given  | Not given                                 |         | Not given                | 183 |
| (H <sub>2</sub> O)(hsb)] (green)                         | P-1                | 16.665(8) | 80.34(3)  |                                      |                  |            |                                           |         |                          |     |
|                                                          | 7                  | 22.127(6) | 74.88(4)  |                                      |                  |            |                                           |         |                          |     |
| (PhSiO <sub>2</sub> )6[Cu6(O <sub>2</sub> SiPh)6].       | £                  | 14.725(1) | 65.836(4) | CuO <sub>5</sub> (×6)                |                  | Not given  | Not given                                 |         | Not given                | 184 |
| 6EtOH (not given) (at 153 K)                             | R3 ·               |           |           |                                      |                  |            |                                           |         |                          |     |
|                                                          |                    |           |           |                                      |                  |            |                                           |         |                          |     |
|                                                          |                    |           |           |                                      |                  |            |                                           |         |                          |     |

<sup>a</sup>Where more than one chemically equivalent distance or angle is present the mean value is tabulated. The first number in parenthesis is e.s.d., the second is maximum deviation from the mean value. <sup>b</sup>The chemical identity of coordination atom/ligand is specified in these columns. <sup>c</sup>Five-membered metallocyclic ring. <sup>c</sup>Six-membered metallocyclic ring.



FIGURE 12 Stereoview of [Cu<sub>3</sub>(2-Clpz)<sub>3</sub>(OH)(deae)<sub>2</sub>(H<sub>2</sub>O)]<sub>2</sub>.<sup>176</sup>

axis. One capping copper atom is joined via oxygen bridges to the two copper atoms in the top face, and the other is likewise joined to the two copper atoms in the bottom face. In the Cu<sub>4</sub>O<sub>4</sub> cubane portion of the structure, the Cu–Cu separations are 3.095(1) (× 2) and 3.122(1) Å (× 4). The Cu–Cu separation between the tapping and the cubane copper atoms is 3.525(1) Å (× 4). The cubane copper atoms have a square-pyramidal coordination geometry, which is distorted towards a trigonal-bipyramidal arrangement. The capping copper atoms are planar.

In a pale green complex<sup>182</sup> any one of the Cu(II) atoms, which are at general positions in the unit call, has exactly the same environment as the other five by the  $C_{3i}$  symmetry. The Cu atoms together form a compressed



FIGURE 13 Structure of [{Cu<sub>3</sub>(OH)(bsmnp)(dmf)}<sub>2</sub>(Cl)(bsmnp)].<sup>179</sup>

trigonal antiprism with six long edges (Cu–Cu 5.65 Å) bordering the equilateral triangular faces and six short edges (Cu–Cu 3.53 Å). The Cu coordination is distorted octahedral with four short (Cu–O 1.95(1) Å) and two long (Cu–O 2.45(1) Å) distances.

In a green-black derivative<sup>13</sup> the  $[Cu_6(\mu_4-O)_2(bibo)_6]^+$  cation contains two triangular  $[Cu_3O]$  units, bridged by their central oxygen atoms. Their are two types of Cu(II) atoms a square-planar (CuO<sub>2</sub>N<sub>2</sub>) and trigonal-bipyramidal with the core CuO<sub>3</sub>N<sub>2</sub>.

## 6 OCTA-, NONA-, AND DODECAMERIC COPPER(II) COMPOUNDS

There are five examples<sup>71,185–188</sup> which contain eight Cu(II) atoms; the structural data for these compounds are given in Table VII. The structure of  $Cu_8(O)_2(Pr^iNCO_2)_{12}^{185}$  is shown in Figure 14. In the asymmetric unit there are four copper(II) atoms and six di(isopropyl) carbamato groups which are

| INI                                                      |                              | ystallographi                       | c and structu                     | rai uata lor octa-, il  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nonecamenic c                                  |                                                                                                                           | 2     |                                          |        |
|----------------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------|--------|
| Compound (colour)                                        | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)             | α (°)<br>β (°)<br>γ (°)           | Chromophore             | Cu-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -7 ( <b>ķ</b> )                                | Cu–Cu (Å)<br>shortest<br>longest<br>average<br>Cu–L–Cu (°)                                                                | Γ-    | Си-L (°)                                 | Ref.   |
| (green)<br>(green)                                       | = <del>-</del> -             | 16.034(4)<br>16.353(4)<br>13.770(3) | 110.11(3)<br>113.63(3)<br>94.0(4) | CuO <sub>5</sub> ( × 2) | и40°<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>1000000 | 1.948(5,3)<br>1.984(6)<br>2.357(6)<br>1.958(5) | 2.830(2)<br>3.081(2)<br>2.971<br>2.971<br>μ4O <sup>b</sup> 100.4(3,7.2)<br>123.8(3,2.1)<br>μO 86.0(3,3.2)<br>103.6(3,3.3) | °,0,0 | 78.7(2)<br>94.0(2,9.2)<br>169.6(2,8.8)   | 185    |
|                                                          |                              |                                     |                                   | CuO <sub>5</sub> ( × 4) | µ40<br>µ0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.913(5,7)<br>1.999(8,20)<br>2.347(8,19)       |                                                                                                                           | 0'0   | 82.1(3)<br>91.1(3,6.3)<br>118.5(3)       |        |
|                                                          |                              |                                     |                                   |                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.948(7,30)                                    |                                                                                                                           |       | 153.4(3)<br>179.3(3)                     |        |
|                                                          |                              |                                     |                                   | CuO <sub>5</sub> ( × 2) | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.948(7)<br>2.399(8)                           |                                                                                                                           | 0'0   | 79.1(3,3.2)<br>94.1(3,13.9)              |        |
|                                                          |                              |                                     |                                   |                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.939(7,10)                                    |                                                                                                                           |       | 117.7(3)<br>147.3(3,2.8)<br>168.4(3,3.4) |        |
| [Cu4(μ5-O((μ-mttt)(CIO4)]2 ·<br>(CIO4)- · · 2H-0 (green) | ы.<br>Р. I                   | 11.497(4)<br>12.714(3)              | 102.92(2)<br>113.15(2)            | $CuO_3N$ ( $\times$ 2)  | 0 <sup>2</sup> 0<br>07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.032(6)<br>1.907(6.7)                         | 2.844(2)<br>3.241(2)                                                                                                      | 0,0   | 86.4(2,1.3)<br>171.1(3)                  | 71,186 |
|                                                          | -                            | 13.546(4)                           | 100.36(3)                         |                         | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.969(8)                                       | 2.946<br>93.5(3,6.7)<br>163.9(4.2.3)                                                                                      | 0'N   | 93.3(3,2.3)<br>174.9(2)                  |        |
|                                                          |                              |                                     |                                   | CuO4N ( × 4)            | μsΟ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.066(5)<br>2.372(7)                           |                                                                                                                           | 0'0   | 88.4(2,5.4)<br>169.8(3)                  |        |
|                                                          |                              |                                     |                                   |                         | οįz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.931(6,9)<br>1.974(7)                         |                                                                                                                           | 0'N   | 96.7(3,5.4)<br>171.0(3)                  |        |

nona- and dodecameric conner(II) comnounds<sup>a</sup> and structural data for octahin TABLE VII Cruetallo

Downloaded At: 14:40 23 January 2011

|                    |             |             |              | 11                           |                                                              |             |                             |             |           |                  |           |             |              |              |              | 187                                                                                      |                                                      |           | 188                                                   |             |                   | 189                                          |                                                                                    |                    |               |              |                 |          |                    |               |          |           |
|--------------------|-------------|-------------|--------------|------------------------------|--------------------------------------------------------------|-------------|-----------------------------|-------------|-----------|------------------|-----------|-------------|--------------|--------------|--------------|------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|-------------------------------------------------------|-------------|-------------------|----------------------------------------------|------------------------------------------------------------------------------------|--------------------|---------------|--------------|-----------------|----------|--------------------|---------------|----------|-----------|
| 88.3(3,8.0)        | 170.5(3,5)  | 94.3(3,2.4) | 174.2(3,2.7) | 86.2(5,11)                   | 169.3(5)                                                     | 93.5(6,1.0) | 176.3(6)                    | 88.1(5,3.6) | 169.7(5)  | 96.9(6,5.3)      | 170.7(6)  | 88.4(6,5.2) | 169.4(6,3)   | 94.3(6,3.3)  | 173.8(6,3.7) | 81.8(1) <sup>c</sup>                                                                     | 84.5(1)                                              | 97.1(1,6) | 158.8                                                 | 161.9       |                   | 90.2(3,5.2)                                  | 172.9(3,1)                                                                         | 77.1(3,1.2)        | 92.7(3,7.1)   | 167.4(3,1.5) |                 |          | 78.3(3)            | 93.5(3,6.0)   | 167.7(3) | 86.2      |
| 0,0                |             | 0,N         |              | 0,0                          |                                                              | 0,N         |                             | 0,0         |           | 0,N              |           | 0,0         |              | Z, O         |              | 0'0                                                                                      |                                                      | 0'N       | 0'0                                                   | Z,Z         |                   | 0'0                                          |                                                                                    | 0,0                |               |              |                 |          | 0,0                |               |          | 0'N       |
|                    |             |             |              | 2.834(4)                     | 3.242(5)                                                     | 2.948       | 93.3(5,6.7)<br>164.8(7,3.1) |             |           |                  |           |             |              |              |              | 2.96                                                                                     |                                                      |           | 3.213(3)                                              | 3.268(2)    | 3.237<br>114.7(5) | 3.071                                        | 3.653<br>3.299                                                                     |                    |               |              |                 |          |                    |               |          |           |
| 2.053(6,1)         | 1.893(6,21) | 1.972(8,4)  | 2.571(8,53)  | 2.032(11)                    | 1.899(12,7)                                                  | 1.972(15)   |                             | 1.079(11)   | 2.381(12) | 1.934(11,8)      | 1.962(18) | 2.045(11,4) | 1.891(13.22) | 1.969(15,14) | 2.506(15,19) | 2.00(2)                                                                                  | 2.04(2,3)                                            | 1.94(2)   | 1.921(8,12)                                           | 1.967(9,21) |                   | 1.941(7,0)                                   | 2.207(8,0)<br>2.107(9)                                                             | 1.964(8)           | 1.966(7)      | 2.380(8)     | 1.960(9,17)     | 2.406(8) | 2.149(7)           | 1.930(8)      | 2.111(8) | 2.048(11) |
| μ5Ο                | 01<br>Q     | Z           | 0,000        | μ5Ο                          | 01<br>Of                                                     | Z           |                             | $\mu_{5}O$  |           | Q <sub>1</sub> ; | Z         | μ5Ο         | 01<br>Q      | Z            | 0,000        | Z                                                                                        | 0                                                    | õ         | ОНμ                                                   | Z           |                   | ΟΗεμ                                         | µCl <sub>2</sub> acO                                                               | ΟΗ <sup>εη</sup>   | $\mu_3$ dmaeO |              | $\mu CL_{2}acO$ |          | ΟΗεμ               | $\mu_3$ dmaeO | :        | z         |
| $CuO_4N(\times 2)$ |             |             |              | CuO <sub>3</sub> N           |                                                              |             |                             | CuO4N       |           |                  |           | CuO4N       |              |              |              | CuO <sub>3</sub> N                                                                       |                                                      |           | CuO <sub>2</sub> N <sub>2</sub>                       |             |                   | $CuO_6( \times 1)$                           |                                                                                    | $CuO_6( \times 2)$ |               |              |                 |          | $CuO_4N(\times 2)$ |               |          |           |
|                    |             |             |              |                              | 109.54(3)                                                    |             |                             |             |           |                  |           |             |              |              |              |                                                                                          |                                                      |           |                                                       | 98.51(1)    |                   |                                              | 97.46(2)                                                                           |                    |               |              |                 |          |                    |               |          |           |
|                    |             |             |              | 15.778(5)                    | 17.384(4)                                                    | 15.392(5)   |                             |             |           |                  |           |             |              |              |              | 23.716(5)                                                                                |                                                      |           | 10.229(3)                                             | 27.217(2)   | 14.532(1)         | 14.835(3)                                    | 14.205(4)<br>20.887(5)                                                             | ~                  |               |              |                 |          |                    |               |          |           |
|                    |             |             |              | E                            | P21/n                                                        | 4           |                             |             |           |                  |           |             |              |              |              | U                                                                                        | P432                                                 | £         | E                                                     | P21/m       | 3                 | E                                            | P2 <sub>1</sub> /n<br>2                                                            |                    |               |              |                 |          |                    |               |          |           |
|                    |             |             |              | [Cu4(µ5-O)(µ-bttt)(ClO4)]2 · | (CIO <sub>4</sub> ) <sub>2</sub> · 2H <sub>2</sub> O (green) |             |                             |             |           |                  |           |             |              |              |              | Na <sub>7</sub> [Cu <sub>8</sub> (urid) <sub>8</sub> Na(H <sub>2</sub> O) <sub>6</sub> ] | 5NaClO <sub>4</sub> · 48H <sub>2</sub> O (not given) |           | Cu <sub>8</sub> (OH) <sub>8</sub> (dmpz) <sub>8</sub> | (green)     |                   | $Cu_{9}(\mu_{3}-OH)_{2}(\mu_{3}-dmae)_{6}$ . | (μ-Cl <sub>2</sub> ac) <sub>8</sub> (Cl <sub>2</sub> ac) <sub>2</sub> (dark green) |                    |               |              |                 |          |                    |               |          |           |

Downloaded At: 14:40 23 January 2011

| (nonunner) III TTTTU                                                                                                                             |                              |                          |                                                                                                                                   |                        |                        |                                       |                                                            |         |                           |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|---------------------------------------|------------------------------------------------------------|---------|---------------------------|------|
| Compound (colour)                                                                                                                                | Cryst. cl.<br>space gr.<br>Z | a (Å)<br>b (Å)<br>c (Å)  | $egin{array}{c} lpha \left( ^{\circ}  ight) \ eta \left( ^{\circ}  ight) \ \gamma \left( ^{\circ}  ight) \end{array} \end{array}$ | Chromophore            | Ca                     | -7 (ỷ)                                | Cu-Cu (Å)<br>shortest<br>longest<br>average<br>Cu-L-Cu (°) | <i></i> | Cu-L (°)                  | Ref. |
|                                                                                                                                                  |                              |                          |                                                                                                                                   |                        | μCl <sub>2</sub> acO   | 1.936(8)                              |                                                            |         | 117.1(3)                  |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   | $CuO_5N$ ( $\times$ 2) | $\mu_3$ dmaeO          | 1.957(8,21)                           |                                                            | 0,0     | 70.9(3,1.4)               |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   |                        |                        | 2.645(7)                              |                                                            |         | 92.2(3,11.5)              |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   |                        | z c                    | 2.035(10)<br>1.074(0)                 |                                                            |         | 149.0(3)<br>173 7/4)      |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   |                        | μCl <sub>2</sub> acO   | 2.431(10)                             |                                                            | 0'N     | 94.7(3,9.3)               |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   | CuO,N ( × 2)           | undmaeO                | 1.943(9.39)                           |                                                            | 0.0     | 171.9(4)<br>93.1(3.10.5)  |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   |                        | 0                      | 2.463(9)                              |                                                            | 5       | 163.2(3)                  |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   |                        | Z                      | 2.051(11)                             |                                                            | 0,N     | 89.3(4,2.7)               |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   |                        | Cl <sub>2</sub> acO    | 1.943(9)                              |                                                            |         | 172.6(4)                  |      |
| Na <sub>2</sub> [Cu <sub>9</sub> Cl <sub>2</sub> (cpa) <sub>6</sub>                                                                              | trg                          | 21.274(5)                |                                                                                                                                   | CuO4Cl (× 6)           | $\mu_3 Cl$             | 2.93(2)                               | 3.342(4)                                                   | 0,0     | 89.9(6,9.4)               | 190  |
| $(H_2O)_3 \cdot xH_2O$ (blue)                                                                                                                    | P321                         |                          |                                                                                                                                   |                        | 01                     | 1.93(2,1)                             | O 120.4(6)                                                 |         | 172.7(6,2.0)              |      |
|                                                                                                                                                  |                              | 7.976(6)                 |                                                                                                                                   |                        | 0                      | 1.91(2,3)                             | Cl 69.4(1)                                                 | 0,CI    | 82.7(3,2)<br>104 175 2 4) |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   | $CuO_{k}(\times 3)$    | 0                      | 1.91(2)                               |                                                            | 0,0     | 90.1(5,6.7)               |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   | ,<br>,                 |                        | 1.92(2)                               |                                                            |         | 175.8(4,5)                |      |
|                                                                                                                                                  |                              |                          |                                                                                                                                   |                        | $H_2O$                 | 2.29(2)                               |                                                            |         |                           |      |
| Cu <sub>9</sub> (μ <sub>3</sub> -OHO)(μ <sub>3</sub> OH) <sub>6</sub>                                                                            | E                            | 15.108(8)                |                                                                                                                                   | $CuO_4 (\times 2)$     | $\mu_3HO$              | 1.89(1)                               | not given                                                  | č       | ot given                  | 96b  |
| (dpm) <sub>9</sub> (light blue)                                                                                                                  | P2 <sub>1</sub> /c<br>4      | 29.437(17)<br>30.528(12) | 113.56(3)                                                                                                                         |                        |                        |                                       | 96(1)<br>123(1)                                            |         |                           |      |
|                                                                                                                                                  |                              | ~                        |                                                                                                                                   | $CuO_5( \times 7)$     | $_{0}^{HO}$            | 2.20(5)                               | ~                                                          | ŭ       | ot given                  |      |
| [Cu <sub>6</sub> ( $\mu_3$ -OH) <sub>2</sub> ( $\mu$ -OH)(30m)] <sub>2</sub> · (NO <sub>3</sub> ) <sub>6</sub> · 10H <sub>2</sub> O (dark green) | tr<br>P-1                    | 14.482(7)<br>14.72(1)    | 95.64(5)<br>92.32(4)                                                                                                              | $CuO_4N(\times 4)$     | ο<br>ΟΗ <sub>ε</sub> μ | (2,1)2(1,1)<br>1.99(1,1)<br>2.44(1,1) | 2.929(3)<br>6.644(6)                                       | ŭ       | ot given                  | 161  |
|                                                                                                                                                  |                              |                          |                                                                                                                                   |                        |                        |                                       |                                                            |         |                           |      |

Downloaded At: 14:40 23 January 2011

TABLE VII (Continued)

| 4.856<br>μ <sub>3</sub> HO 97.8(5,5)<br>μHO 96.3(4)<br>μΟ 97.1(5,8)<br>133.3(8,1.7) | besis is e s.d. the second is maxim |
|-------------------------------------------------------------------------------------|-------------------------------------|
| 1.96(1,1)<br>1.94(1,2)                                                              | her in parent                       |
| д<br>И<br>И                                                                         | an value is tabulated The first num |
| 114.85(4)                                                                           | resent the me                       |
| 12.193(4)                                                                           | stance or angle is n                |
| _                                                                                   | ane chemically equivalent di        |

mum deviation from the mean : h par ent distance of angle is present the mean value is tabulate <sup>a</sup> Where more than one chemically equivalent distance or angle is present the mea value. <sup>b</sup>The chemical identity of coordination atom/ligand is specified in these columns. <sup>c</sup> Five-membered metallocyclic ring.



FIGURE 14 Structure of Cu<sub>8</sub>(O)<sub>2</sub>(Pr<sub>2</sub><sup>i</sup>NCO<sub>2</sub>)<sub>12</sub>.<sup>185</sup>

crystallographically independent. An important feature of the structure is the presence of a  $\mu_4$ -O(1), which is coordinated tetrahedrally to four copper(II) atoms with Cu–O distances ranging from 1.906(5) to 1.950(6) Å and with Cu–O–Cu angles (range 93.2(3)°–125.9(3)°) considerably different than the normal tetrahedral angle. The environment around each copper atom is a square pyramid (CuO<sub>5</sub>). The Cu–O apical bonds are 0.3–0.5 Å longer than the equatorial Cu–O bonds. The out-of-plane distance of the copper atom varies from 0.07 to 0.22 Å.

Structures of another two green derivatives<sup>71,186</sup> are rather similar. Both structures are centrosymmetric dimers with four copper(II) atoms bound

with the macrocycle. The central oxygen donor is a five-coordinate oxo anion which is displaced from the mean plane of the four copper(II) atoms by 0.29 and 0.27 Å, respectively. The coordination sphere of  $\mu_5$ -O is completed by a copper atom from the second macrocyclic unit of the dimer. This bond holds the dimer together with Cu–O distances of 2.84(1) and 2.72(1) Å for one derivative<sup>71,186</sup> and 2.80(1) and 2.73(1) Å for the other.<sup>186</sup>

The structure of another derivative<sup>187</sup> has two interesting aspects: (1) molecular entities  $Cu_8urid_8$ , containing  $Na(H_2O)_6$  ions, surrounded by perchlorate groups, and (2) a three-dimensional framework based on sodium atoms, giving rise to the formation of tunnels where the copper entities are located. The uridine ligand is three-coordinate towards three copper(II) atoms by the nitrogen atom of the pyrimidine base and by two oxygen atoms of the ribose, from which one oxygen atom bridges two copper atoms. The copper(II) atoms are in a square-planar configuration and associated in dimers in the  $Cu_8urid_8$  octamer. The Cu-Cu distance within the dimers is 2.96 Å. In the  $Cu_8urid_8$  octamer, the eight copper(II) atoms occupy the vertices of a distorted Archimedian square antiprism (diagonal of the square line is 11.4 Å). The eight interconnected uridine ligands form a kind of toric structure (Figure 15).

 $Cu_8(OH)_8(dmpZ)_8^{188}$  consists of a discute molecule of towidal shape, containing a ring of eight monomeric units. Each molecule lies on a crystallographic mirror plane and possesses idealized  $D_{4d}$  symmetry, with an  $S_8$ axis normal to the plane and is topologically equivalent to cyclo-octane. Each of the copper(II) atoms, approximately located at the vertices of a regular octagon, is connected to two OH and two dmpz groups, with almost square-planar coordination geometry (*trans* isomer). All ligands bridge Cu(II) pairs, having an average non-bonding distance of 3.237 Å.

There are three derivatives<sup>96b,189,190</sup> which contain nine Cu(II) atoms. The structure of a green compound<sup>189</sup> is shown in Figure 16. The crystal structure consists of discrete nonameric molecules which possess a two-fold rotation axis passing through a copper atom. The nine copper atoms in the molecule are bridged by ten carboxylate groups, six triply-bridging ethanol-tato oxygen atoms and two triply-bridging hydroxo oxygen atoms. The coordination number of copper is five for Cu(3) and Cu(5) and six for the other Cu(II) atoms, the coordination polyhedra being square-pyramidal or *pseudo*-octahedral. The Cu(3) and Cu(5) are displaced from the mean planes towards the apical sites by 0.29 and 0.11 Å, respectively.

The structure of a blue derivative<sup>190</sup> is shown in Figure 17. Two environments for copper were found in the structure. The copper atom in site one, located near a crystallographic three-fold axis, has a square-pyramidal



FIGURE 15 Structure of [Cu<sub>8</sub>(urid)<sub>8</sub>Na(H<sub>2</sub>O)<sub>6</sub>]<sup>7-.187</sup>



FIGURE 16 Structure of Cu<sub>9</sub>(OH)<sub>2</sub>(dmae)<sub>6</sub>(Cl<sub>2</sub>ac)<sub>10</sub>.<sup>189</sup>



FIGURE 17 Structure of [Cu<sub>9</sub>Cl<sub>2</sub>(cpa)<sub>6</sub>(H<sub>2</sub>O)<sub>3</sub>]<sup>2-.190</sup>

environment (CuO<sub>4</sub>Cl). The copper atom in site two is located on a crystallographic two-fold axis and has four relatively short equatorial bonds and two longer axial bonds, all to oxygen donors (Figure 17, Table VII).

The central core in  $Cu_9(OHO)(OH)_6(dmp)_9^{96b}$  contains nine Cu(II) atoms and eight oxygen atoms. Six copper(II) atoms form a trigonal prism with the remaining three copper(II) atoms above the rectangular faces. The Cu(II) atoms of the trigonal prism exhibit square-pyramidal geometry with two oxygen atoms furnished by the chelating dpm, two oxygen atoms furnished by the bridging OH groups and one oxygen furnished by a postulated OHO<sup>-</sup> group. The trigonal prism chelate rings are at a 45° angle to the equatorial (facial) chelate rings.



FIGURE 18 Structure of  $[Cu_6(OH)_3(30m)]_2^{6+.191}$ 

The structure of a dimeric cation<sup>191</sup> is unique consisting of two almost flat, hexagonal macrocyclic rings, each involving an array of six *pseudo*square-planar copper(II) centers, which are coupled together by an axial bridging interaction in which hydroxide bridges (O(7) and O(9)) not only bridge copper pairs Cu(1), Cu(2) and Cu(5), Cu(6), respectively, within the same ring, but also provide a bridge to copper atoms Cu(4) and Cu(3), respectively, on the other macrocyclic ring. The molecular symmetry dictates that this inter-macrocycle bridging also involves the symmetry related atoms and so the two rings are held together by four axial hydroxide bridges (Figure 18). The copper(II) atoms are linked within each ring by an alternating single and double bridged arrangement of oxygen atoms (alkoxide and hydroxide plus phenoxide) that resembles a resonance from a benzene. The adjacent Cu-Cu separations alternate between short (2.92– 2.96 Å) and long (3.54-3.57 Å) contacts (Table VII).

## 7 CONCLUSIONS

This review has classified over two hundred and thirty oligomeric copper(II) structures. Copper(II) compounds are for the most part green and blue, but

there are many red/orange, yellow, brown and even black complexes. The number of examples decrease in the sequence: tetrameric (135) > trimeric (73) > hexameric (12) > pentameric  $(5) \cong$  octameric (5) > nonameric (2) > dodecameric (1). The most common donor atom ligands are oxygen and nitrogen donors, with oxygen as the most common bridging atom. The ligands range from mono- to octadentate and even dodecadentate. Various geometries are found: four- (square-planar), five- (mostly square-pyramidal) and six- (mostly tetragonal-bipyramidal) coordination.

Pairs of independent molecules with differing degrees of distortion are found in the same crystal in several cases. <sup>52,55,82,88,89</sup>

Relationships between the various structural parameters have been discussed within each section.

This review, together with its precursors dealing with monomeric<sup>3,4</sup> and dimeric<sup>5</sup> complexes of copper(II), represents the first overview of structural data for copper(II).

During the collection and organization of the data it became clear that, despite the increasing availability of data retrieval systems, the tracing of relevant material is not always straightforward. Some of the data are only available as supplementary material, and some not mentioned at all. This can lead to the overlooking of relevant structural features which should be compared with other derivatives. On the other hand, there are several examples where the same compounds are studied by two or more different groups without any cross referencing, and important discrepancies in the data obtained have gone without comment. In view of the limitations in information retrieval, we believe that it is necessary to make a systematic overall review, and that such reviews serve to delineate areas of both interest and weakness. A related review of the structural chemistry of polymeric copper(II) complexes is currently in progress.

#### Acknowledgements

The authors wish to thank those who gave permission for reproduction of original figures, and the Ministry of Education of the Slovak Republic for financial support.

## References

- [1] C.E. Holloway and M. Melník, Rev. Inorg. Chem. 15, 147 (1995).
- [2] M. Dunaj-Jurčo, G. Ondrejovič and M. Melník, Coord. Chem. Rev. 83, 1 (1988).
- [3] M. Melník, M. Kabešová, M. Dunaj-Jurčo and C.E. Holloway, J. Coord. Chem. 41, 35 (1991).

### M. MELNÍK et al.

- [4] M. Melník, M. Kabešová, M. Koman, L'. Macášková and C.E. Holloway, J. Coord. Chem. 45, 31 (1998).
- [5] M. Melník, M. Kabešová, L. Macášková, J. Garaj, C.E. Holloway and A. Valent, J. Coord. Chem. 45, 147 (1998).
- [6] Liang-Ping Wu, P. Field, T. Morrissey, C. Murphy, P. Nagle, B. Hathaway, Ch. Simmons and P. Thornton, J. Chem. Soc., Dalton Trans. 3835 (1990).
- [7] J. Comarmond, B. Dietrich, J.M. Lehn and R. Louis, J. Chem. Soc. Chem. Commun. 74 (1985).
- [8] J.P. Costes, F. Dahan and J.P. Laurent, Inorg. Chem. 25, 413 (1986).
- [9] E. Kwiatkowski, M. Kwiatkowski, U. Dettlaff-Weglikowska and D.M. Ho, J. Crystallogr. Spectr. Res. 22, 411 (1922).
- [10] M. Angaroni, G.A. Ardizzoia, T. Beringhelli, G. La Monica, D. Gatteschi, N. Masciocchi and M. Moret, J. Chem. Soc., Dalton Trans. 3305 (1990).
- [11] R. Beckett and B.F. Hoskins, J. Chem. Soc., Dalton Trans. 291 (1972).
- [12] R.J. Butcher, Ch.J. O'Connor and E. Sinn, Inorg. Chem. 20, 537 (1981).
- [13] Y. Agnus, R. Louis, C. Boudon, J.P. Gisselbrecht and M. Gross, Inorg. Chem. 30, 3155 (1991).
- [14] P.F. Ross, R.K. Murmann and E.O. Schlemper, Acta Crystallogr. Sect. B, 30, 1120 (1974).
- [15] M. Kwiatkowski, E. Kwiatkowski, A. Olechnowicz, D.M. Ho and E. Deutsch, *Inorg. Chim. Acta* 150, 65 (1988).
- [16] F.B. Hulsbergen, R.W.M. ten Hoedt, G.C. Verschoor, J. Reedijk and A.L. Spek, J. Chem. Soc., Dalton Trans. 539 (1983).
- [17] N. Matsumoto, Y. Nishida, S. Kida and I. Ueda, Bull. Chem. Soc., Jpn. 49, 117 (1976).
- [18] R. Sillanpää and J. Valkonen, Acta Chem. Scand. 46, 1072 (1992).
- [19] S. Mylllyvita and R. Sillanpää, J. Chem. Soc., Dalton Trans. 2125 (1994).
- [20] G. Valle, M.E. Cucciolito, P. Ganis and A. Saporito, Z. Kristallogr. 189, 125 (1989).
- [21] G. Ferguson, C.R. Langrick, D. Parker and K.E. Matthes, J. Chem. Soc. Chem. Commun. 1609 (1985).
- [22] N.F. Curtis, G.J. Gainsford and K.R. Morgan, Aust. J. Chem. 41, 1545 (1988).
- [23] J.M. Epstein, B.N. Figgis, A.H. White and A.C. Willis, J. Chem. Soc., Dalton Trans. 1954 (1974).
- [24] R. Sillanpää and K. Rissanen, Acta Chem. Scand. 44, 1013 (1990).
- [25] W.A. Baker Jr. and F.T. Helm, J. Amer. Chem. Soc. 97, 2295 (1975).
- [26] C. Flassbeck, K. Wieghardt, B. Nuber and J. Wiess, Z. Naturforsch. 46b, 1489 (1991).
- [27] A. Britel, J.C. Boivin, D. Thomas and M. Wozniak, Acta Crystallogr. Sect. C, 41, 1609 (1985).
- [28] D.D. Swank and R.D. Willett, Inorg. Chim. Acta 8, 143 (1974).
- [29] T.E. Grigereit, B.L. Ramakrishna, H. Place, R.D. Willett, G.C. Pellacani, T. Manfredini, L. Menabue, A. Bonamaartini-Corradi and L.P. Battaglia, *Inorg. Chem.* 26, 2235 (1987).
- [30] O.S. Filipenko, O.N. Krasochka and L.O. Atovmjan, Koord. Khim. 10, 547 (1984).
- [31] P. de Meester, D.M.L. Goodgame, K.A. Price and A.C. Skapski, J. Chem. Soc. Chem. Commun. 1573 (1970); P. de Meester and A.C. Skapski, J. Chem. Soc., Dalton Trans. 2400 (1972).
- [32] R. Fletcher, J.J. Hansen, J. Livermore and R.D. Willett, Inorg. Chem. 22, 330 (1983).
- [33] K.D. Onan, M. Veidis, G. Davies, M.A. El-Sayed and El-Toukhy, Inorg. Chim. Acta 81, 7 (1984).
- [34] M.R. Bond, R.D. Willett, R.S. Rubins, P. Zhou, C.E. Zaspel, S.L. Hutton and J.E. Drumheller, *Phys. Rev. B*, 42, 10 280 (1990).
- [35] K. Smolander and K. Leisto, Inorg Chim. Acta 169, 151 (1990).
- [36] B. Chiari, O. Piovesana, T. Tarantelli and P.F. Zanazzi, Inorg. Chem. 24, 4615 (1985).
- [37] H. Knuuttila, Inorg. Chim. Acta 50, 221 (1981).
- [38] W. Haase and S. Gehring, J. Chem. Soc., Dalton Trans. 2609 (1985).
- [39] H. Muhonen, A. Pajunen and R. Hämäläinen, Acta. Crystallogr. Sect. B, 36 2790 (1980).
- [40] H. Knuuttila, Inorg. Chim. Acta 72, 11 (1983).
- [41] J.Ch. Zheng, R.J. Rousseau and S. Wang, Inorg. Chem. 31, 106 (1992).
- [42] M. Näsäkkalä, Anal. Acad. Scand. Fen. Ser. A, II Chemica 35 (1977).

- [43] R. Kivekäs, Finn. Chem. Lett. 58 (1978).
- [44] P. Chaudhuri, M. Winter, B.P.C. Della Védova, E. Bill, A. Trautwein, S. Gehring, P. Flleischhauer, B. Nuber and J. Weiss, *Inorg. Chem.* 30, 2148 (1991).
- [45] M. Angaroni, G.A. Ardizzoia, G. La Monica, E.M. Beccalli, N. Masciocchi and M. Moret, J. Chem. Soc., Dalton Trans. 2715 (1992).
- [46] D. Luneau, H. Oshio, H. Okawa and S. Kida, Chem. Letters, 443 (1989); H. Okawa, M. Koikawa, S. Kida, D. Luneau and H. Oshio, J Chem. Soc., Dalton Trans. 469 (1990).
- [47] W. Vreugdenhil, J.G. Haasnoot, J. Reedijk and J.S. Wood, Inorg. Chim. Acta 167, 109 (1990).
- [48] W.S. Sheldrick, Z. Naturforsch. 38b, 16 (1983).
- [49] Y. Journaux, J. Sletten and O. Kahn, Inorg. Chem. 25, 439 (1986).
- [50] V.G. Albano, C. Castellari, A.C. Fabretti and A. Giusti, Inorg. Chim. Acta 191, 213 (1992).
- [51] R. Veit, J.J. Girerd, O. Kahn, F. Robert and Y. Jeannin, Inorg. Chem. 25, 4175 (1986).
- [52] R. Costa, A. Garcia, R. Sanchez, J. Ribas, X. Solans and V. Rodriguez, Polyhedron 12, 2697 (1993).
- [53] J.A. Bertrand, Ch.P. Marabella and D.G. Vanderveer, Inorg. Chim. Acta 25, L69 (1977).
- [54] R. Kivekäs, A. Pajunen and K. Smolander, Finn. Chem. Lett. 256 (1977).
- [55] A. Pajunen and R. Kivekäs, Crystl. Struct. Commun. 8, 385 (1979).
- [56] T.F. Sysoeva, V.M. Agre, V.K. Trunov, N.M. Dyatlova and N.N. Barkhanova, Zh. Strukt. Khim. 25, 107 (1984); Engl. Ed. p. 434.
- [57] I.V. Vasilevsky, R.E. Stenkamp, E.C. Lingafelter, V. Schomaker, R.D. Willett and N.J. Rose, *Inorg. Chem.* 28, 2619 (1989).
- [58] L. Antolini, G. Marcotrigiano, L. Menabue and G.C. Pellacani, J. Amer. Chem. Soc. 102, 5506 (1980).
- [59] C.B. Castellani, O. Carugo and A. Coda, Inorg. Chem. 26, 671 (1987).
- [60] S. Meenakumari and A.R. Chakravarty, J. Chem. Soc., Dalton Trans. 2749 (1992).
- [61] G. Kolks, S.J. Lippard and J.V. Waszczak, J. Amer. Chem. Soc. 102, 4832 (1980).
- [62] G. Nieuwpoort, G.C. Verschoor and J. Reedijk, J. Chem. Soc., Dalton Trans. 531 (1983).
- [63] P. Chaudhuri, I. Karpenstein, M. Winter, Ch. Butzlaff, E. Bill, A.X. Trautwein, U. Flörke and H.J. Haupt, J. Chem. Soc. Chem. Commun. 321 (1992).
- [64] T. Kogane, K. Kobayashi, M. Ishii, R. Hirota and M. Nakahara, Chem. Letters, 419 (1991).
- [65] A. Caneschi, D. Gatteschi, R. Sessoli, S.K. Hoffmann, J. Laugier and P. Rey, *Inorg. Chem.* 27, 2390 (1988).
- [66] A. Caneschi, F. Ferraro, D. Gatteschi, P. Rey and R. Sessoli, Inorg. Chem. 30, 3162 (1991).
- [67] A.B. Burdukov, V.I. Ovcharenko, N.V. Pervukhina, V.N. Ikorskii and N.V. Podberzskaya, Zh. Neorg. Khim. 35, 2058 (1991); Engl. Ed. p. 1162.
- [68] N.V. Pervukhina, N.V. Podberezskaya, V.I. Ovacharenko and S.V. Larionov, Zh. Strukt. Khim. 32, 123 (1991).
- [69] L. Chen, L.K. Thompson and J.N. Bridson, Can. J. Chem. 70, 1888 (1992).
- [70] M. Melnik, Coord. Chem. Rev. 47, 239 (1982).
- [71] V. McKee and S.S. Tandon, J. Chem. Soc., Dalton Trans. 221 (1991); Chem. Commun. 385 (1988).
- [72] A. El-Toukhy, Guang-Zuan Cai, G. Davies, T.R. Gilbert, K.D. Onan and M. Veidis, J. Amer. Chem. Soc. 106, 4596 (1984).
- [73] J.T. Guy Jr., J.C. Cooper, R.D. Gilardi, J.L. Flippen-Anderson and C.F. George Jr., Inorg. Chem. 27, 635 (1988).
- [74] S. Brownstein, N. Fong Han, E. Gabe and F. Lee, Can. J. Chem. 67, 551 (1989).
- [75] M.R. Churchill and F.J. Rotella, Inorg. Chem. 18, 853 (1979).
- [76] N.S. Gill and M. Sterns, Inorg. Chem. 9, 1619 (1970).
- [77] I.P. Kondratyuk, M.A. Yampolskaya, Yu.A. Simonov, L.A. Muradjan and V.I. Simonov, *Kristallografiya* 31, 682 (1986).
- [78] B.T. Kibourn and J.D. Dunitz, Inorg. Chim. Acta 1, 209 (1967).
- [79] A.A. Dvorkin, Yu.A. Simonov, M.A. Yampolskaya and T.I. Malinovsky, Kristallografiya 28, 811 (1983).
- [80] W. Hiller, A. Zinn and K. Dehnicke, Z. Naturforsch. 45b, 1593 (1990).

#### M. MELNÍK et al.

- [81] G.A. Nifontova, I.P. Lavrentjev, V.I. Ponomarev, O.S. Filipenko, O.N. Krasochka, L.O. Atovmjan and Hibekel, Neorg. Khim. 8, 1691 (1982).
- [82] R.E. Norman, N.J. Rose and R.E. Stenkamp, Acta Crystallogr. Sect. C, 45, 1707 (1989).
- [83] F.S. Keij, J.G. Haasnoot, Ad J. Oosterling, J. Reedijk. Ch.J. O'Connor, J.H. Zhang and A.L. Spek, *Inorg. Chim. Acta* 181, 185 (1991).
- [84] W. Clegg, J.R. Nicholson, D. Collison and C.D. Garner, Acta Crystallogr. Sect. C, 44, 453 (1988).
- [85] J.A. Bertrand, Inorg. Chem. 3, 495 (1967).
- [86] J. Pickardt and N. Rautenberg, Z. Naturforsch. 37b, 1355 (1982).
- [87] Yu.A. Simonov, M.A. Yampolskaya, A.A. Dvorkin, A.V. Ablov, T.I. Malinovsky and G.S. Matusenko, Koord. Khim. 6, 302 (1980).
- [88] E.M. Holt, S.L. Holt and M. Vlasse, Cryst. Struct. Commun. 8, 767 (1979).
- [89] J.A. Bertrand and J.A. Kelley, Inorg. Chem. 8, 1982 (1969).
- [90] R.L. Harlow and S.H. Simonsen, Acta Crystallogr. Sect. B, 33, 2784 (1977).
- [91] A. Erdonmez, J.H. van Diemen, R.A.G. de Graaff and J. Redijk, Acta Crystallogr. Sect. C, 46, 402 (1990).
- [92] M.R. Churchill, B.G. DeBoer and S.J. Mendak, Inorg. Chem. 14, 2496 (1975).
- [93] J. Poitras and A.L. Beauchamp, Can. J. Chem. 70, 2846 (1992).
- [94] R.C. Dickinson, F.T. Helm, W.A. Baker Jr., T.D. Black and W.H. Waatson Jr., *Inorg. Chem.* 16, 1530 (1971).
- [95] D.D. Swank, D.O. Nielson and R.D. Willett, Inorg. Chim. Acta. 7, 91 (1973).
- [96] (a) Yu.A. Simonov, M.A. Yampolskaya, V.E. Zavodnik and T.M. Gifejsman, Dokl. Akad. Nauk SSSR, 269, 362 (1983); (b) W.H. Watson and W.W. Holley, Croat. Chim. Acta 57, 467 (1984).
- [97] M. Mikuriya, H. Okawa and S. Kida, Inorg. Chim. Acta 103, 217 (1985).
- [98] A.V. Ablov, Yu.S. Simonov, G.S. Maturenko, A.A. Dvorkin, M.A. Yampolskaya and T.I. Malinovskij, Dokl. Akad. Nauk SSSR 235, 1335 (1977).
- [99] W. Bidell, V. Shklover and H. Berke, Inorg. Chem. 31, 5561 (1992).
- [100] J.A. Bertrand, J.A. Kelly and C.E. Kirkwood, J. Chem. Soc. Chem. Commun. 1329 (1968); J.A. Bertrand and J.A. Kelly, Inorg. Chim. 4, 203 (1970).
- [101] B. Jezowska-Trzebiatowska, Z. Olejnik and T. Lis, J. Chem. Soc., Dalton Trans. 251 (1981).
- [102] R. Mergehenn and W. Haase, Acta Crystallogr. Sect. B, 33, 2734 (1977).
- [103] N. Matsumoto, T. Kondo, M. Kodera, H. Okawa and S. Kida, Bull. Chem. Soc. Jpn. 62, 4041 (1989).
- [104] L. Merz and W. Haase, Acta Crystallogr. Sect. B, 34, 2128 (1978).
- [105] R. Mergehenn, L. Merz and W. Haase, Acta Crystallogr. Sect. B, 32, 505 (1976).
- [106] E.D. Estes and D.J. Hodgson, Inorg. Chem. 14, 334 (1975).
- [107] L. Schwabe and W. Haase, Acta Crystallogr. Sect. C, 42, 667 (1986).
- [108] L. Schwabe and W. Haase, J. Chem. Soc., Dalton Trans. 1909 (1985).
- [109] L. Merz and W. Haase, J. Chem. Soc., Dalton Trans. 1594 (1978).
- [110] G.D. Fallon, B. Moubaraki, K.S. Murray, A.M. van den Bergen and B.O. West, Polyhedron 12, 1989 (1993).
- [111] P.L. Dedert, T. Sorrell, T.J. Marks and J.A. Ibers, Inorg. Chem. 21, 3506 (1982).
- [112] H. Muhonen, Acta Chem. Scand. Ser. A, 34, 79 (1980).
- [113] H. Astheimer, F. Nepveu, L. Walz and W. Haase, J. Chem. Soc., Dalton Trans. 315 (1985).
- [114] N. Matsumoto, I. Ueda, Y. Nishida and S. Kida, Bull. Chem. Soc. Jpn. 49, 1308 (1976).
- [115] M.R. Udupa and B. Krebs, Inorg. Chim. Acta 39, 267 (1980).
- [116] C. Sirio, O. Poncelet, L.G. Hubert-Pfalzgraf, J.C. Daran and J. Vaissermann, *Polyhedron* 11, 177 (1992).
- [117] R. Mergehenn, W. Haase and R. Allmann, Acta Crystallogr. Sect. B, 31, 1847 (1975).
- [118] L. Walz, H. Paulus, W. Haase, H. Langhof and F. Nepveu, J. Chem. Soc., Dalton Trans. 657 (1983).
- [119] W. Haase, Chem. Ber. 106, 3132 (1973).
- [120] Yu.M. Chumakov, V.N. Biyushkin, T.I. Malinovskii, S. Kulemu, V.I. Tsapkov, M.S. Popov and N.M. Samus, Koord. Khim. 16, 945 (1990); Engl. Ed. p. 509.
- [121] R. Mergehenn, L. Merz and W. Haase, J. Chem. Soc., Dalton Trans. 1703 (1980).
- [122] K. Nieminen, Acta Chem. Scand. Ser. A, 31, 693 (1977).

- [123] G.A. van Albada, J. Reedijk, R. Hämäläinen, U. Turpeinen and A.L. Spek, Inorg. Chim. Acta 163, 213 (1989).
- [124] K. Nieminen and A. Pajunen, Acta Chem. Scand. Ser. A, 32, 493 (1978).
- [125] J.P. Laurent, J.J. Bonnet, F. Nepveu, H. Astheimer, L. Waalz and W. Haase J. Chem. Soc., Dalton Trans. 2433 (1982).
- [126] U. Turpeinen, R. Hämäläinen and M. Ahlgrén, Cryst. Struct. Commun. 10, 179 (1981).
- [127] K. Smolander, Acta Chem. Scand. Ser. A, 36, 189 (1982).
- [128] M. Ahlgrén, U. Turpeinen and R. Hämäläinen, Acta Crystallogr. Sect. B, 38, 429 (1982).
- [129] U. Turpeinen, R. Hämäläinen, M. Ahlgrén and K. Smolander, Finn. Chem. Lett. 108 (1979).
- [130] A. Pajunen, Acta Crystallogr. Sect. B, 35, 1691 (1979).
- [131] E. Gojon, J.M. Latour, S.J. Greaves, D.C. Povey, V. Ramdas and G.W. Smith, J. Chem. Soc., Dalton Trans. 2043 (1990).
- [132] M. Ahlgrén, R. Hämäläinen, U. Turpeinen and K. Smolander, Acta Crystallogr. Sect. B, 35, 2870 (1979).
- [133] K. Smolander, U. Turpeinen and M. Ahlgrén, Finn. Chem. Lett. 195 (1978).
- [134] U. Turpeinen, R. Hämäläinen and M. Ahlgrén, Acta Crystallogr. Sect. B, 36, 927 (1980).
- [135] C.A. Bear, J.M. Waters and T.N. Waters, J. Chem. Soc., Dalton Trans. 1059 (1974).
- [136] J.V. Folgado, P. Gomez-Romero, F. Sapiňa and D. Beltrán-Porter, J. Chem. Soc., Dalton Trans. 2325 (1990).
- [137] R.E. Caputo, M.J. Vukosavovich and R.D. Willett, Acta Crystallogr. Sect. B, 32, 2516 (1976).
- [138] K.E. Halvorson, T. Grigereit and R.D. Willett, Inorg. Chem. 26, 1716 (1987).
- [139] R.D. Willett and U. Geiser, Inorg. Chem. 25, 4558 (1986).
- [140] U. Geiser, R.D. Willett, M. Lindbeck and K. Emerson, J. Amer. Chem. Soc. 108, 1173 (1986).
- [141] A.P. Purdy, C.F. George and G.A. Brewer, Inorg. Chem. 31, 2633 (1992).
- [142] R.R. Gagne, R.S. Gall, G.C. Lisensky, R.E. Marsh and L.M. Speltz, Inorg. Chem. 18, 771 (1979).
- [143] L. Banci, A. Bencini, C. Benelli, M. Di Vaira and D. Gatteschi, Inorg. Chem. 21, 3801 (1982).
- [144] Ch. Fukuhara, K. Tsuneyoshi, K. Katsura, N. Matsumoto, S. Kida and M. Mori, Bull. Chem. Soc. Jpn. 62, 3939 (1989).
- [145] E. Gojon, S.J. Greaves, J.M. Latour, D.C. Povey and G.W. Smith, *Inorg. Chem.* 26, 1457 (1987).
- [146] (a) D. Masi, C. Mealli, M. Sabat, A. Sabatini, A. Vacca and F. Zanovini, *Helv. Chim. Acta* 67, 1818 (1984); (b) M. Sakamoto, S. Itose, T. Ishimori, N. Matsumoto, H. Okawa and S. Kida, J. Chem. Soc., Dalton Trans. 2083 (1989).
- [147] J.E. Andrew and A.B. Blake, J. Chem. Soc., Dalton Trans. 1102 (1973).
- [148] J. Lorösch, H. Paulus and W. Haase, Inorg. Chim. Acta 106, 101 (1985).
- [149] A.R. Hendrickson, R.L. Martin and D. Taylor, Inorg. Chim. Acta 106, 101 (1985).
- [150] W. Mazurek, K.J. Berry, K.S. Murray, M.J. O'Connor, M.R. Snow and A.G. Wedd, *Inorg. Chem.* 21, 3071 (1982).
- [151] P. Knuuttila, Inorg. Chim. Acta 58, 201 (1982).
- [152] Shie-Ming Peg and Yu-Nan Lin, Acta Crystallogr. Sect. C, 42, 1725 (1986).
- [153] R.L. Lintvedt and J.K. Zehetmair, Inorg. Chem. 29, 2204 (1990).
- [154] S.S. Tandon, S.K. Mandal, L.K. Thompson and R.C. Hynes, *Inorg. Chem.* 31, 2215 (1992).
- [155] E.W. Ainscough, A.M. Brodie, J.D. Ranford, J.M. Waters and K.S. Murray, Inorg. Chim. Acta 197, 107 (1992).
- [156] R.G. Little, D.B.W. Yawney and R. Doedens, J. Chem. Soc. Chem. Commun. 228 (1972); R.G. Little, J.A. Moreland, D.B.W. Yawney and R.J. Doedens, J. Amer. Chem. Soc. 96, 3834 (1974).
- [157] Yu.N. Safyanov, L.N. Zaharov, Yu.T. Struchkov, A.V. Lobanov, V.K. Cherkasov and G.A. Abakumov, *Koord. Khim.* 15, 1233 (1989).
- [158] S. Wang, S.J. Trepanier, J.Ch. Zheng, Z. Pang and M.J. Wagner, *Inorg. Chem.* 31, 2118 (1992).
- [159] M.M. Olmstead, P.P. Power, G. Speier and Z. Tyeklár, Polyhedron 7, 609 (1988).
- [160] J. Drummond and J.S. Wood, J. Chem. Soc., Dalton Trans. 365 (1972).

# M. MELNÍK et al.

- [161] H. Saarinen, M. Orama and J. Korvenranta, Acta Chem. Scand. 43, 834 (1989).
- [162] R.W.M. ten Hoedt, F.B. Hulsbergen, G.C. Verschoor and J. Reedijk, Inorg. Chem. 21, 2369 (1982).
- [163] P.J. van Koningsbruggen, E. Müller, J.G. Haasnoot and J. Reedijk, *Inorg. Chim. Acta* 208, 37 (1993).
- [164] R. Prins, R.A.G. de Graaff, J.G. Haasnoot, C. Vader and J. Reedijk, J. Chem. Soc. Chem. Commun. 1430 (1986).
- [165] C. Chauvel, J.J. Girerd, Y. Jeannin, O. Kahn and G. Lavigne, *Inorg. Chem.* 18, 3015 (1979).
- [166] P. Chaudhuri, I. Karpenstein, M. Winter, M. Lengen, Ch. Butzlaff, E. Bill, A.X. Trautwein, U. Flörke and H.J. Haupt, *Inorg. Chem.* 32, 888 (1993).
- [167] G. Kolks and S.J. Lippard, Acta Crystallogr. Sect. C, 40, 261 (1984); G. Kolks, C.R. Frihart, H.N. Rabinowitz and S.J. Lippard, J. Amer. Chem. Soc. 98, 5720 (1976).
- [168] R.R. Gagné, M.W. McCool and R.E. Marsh, Acta Crystallogr. Sect. B, 36 2420 (1980).
- [169] A. Mangia, C. Pelizzi and G. Pelizzi, Acta Crystallogr. Sect. C, 30, 2146 (1974).
- [170] I.I. Mathews and H. Manohar, Polyhedron, 10, 2851 (1991).
- [171] (a) R.W. Gelbert, B.E. Fischer and R. Bau, J. Amer. Chem. Soc. 102, 7812 (1980);
   (b) W.S. Sheldrick, Z. Naturforsch. 37b, 863 (1982).
- [172] S. Meenakumari and A.R. Chakravarty, J. Chem. Soc., Dalton Trans. 2305 (1992).
- [173] B. Kurzak, E. Farkas, T. Glowiak and H. Kozlowski, J. Chem. Soc., Dalton Trans. 163 (1991).
- [174] E. Gojon, J. Gaillard, J.M. Larour and J. Laugier, Inorg. Chem. 26, 2046 (1987).
- [175] J. Handley, D. Collison, C.D. Garner, M. Helliwell, R. Docherby, J.R. Lawson and P.A. Tasker, Angew. Chem. Int. Engl. Ed. 32, 1036 (1993).
- [176] K. Smolander, Acta Chem. Scand. Ser. A, 37, 5 (1983).
- [177] M. Ahgrén, U. Turpeinen and K. Smolander, Acta Crystallogr. Sect. B, 36, 1091 (1980).
- [178] U. Turpeinen, R. Hämäläinen and J. Reedijk, Inorg. Chim. Acta 154, 201 (1988).
- [179] N.A. Bailey, D.E. Fenton, R. Moody, P.J. Scrimshire and J.M. Latour, *Inorg. Chim. Acta*, 124, L1 (1986); N.A. Bailey, D.E. Fenton, R. Moody, P.J. Scrimshire, E. Beloritzky, P.H. Fries and J.M. Latour, *J. Chem. Soc.*, *Dalton Trans*. 2817 (1988).
- [180] Z. Olejnik, B. Jezowska-Trzebiatowska and T. Lis, J. Chem. Soc., Dalton Trans. 97 (1986).
- [181] H. Muhonen, W.E. Hatfield and J.H. Heims, Inorg. Chem. 25, 800 (1986).
- [182] J.R. Carruthers, K. Prout and F.J.C. Rossotti, Acta Crystallogr. Sect. B, 31, 2044 (1975).
- [183] B.F. Hoskins, R. Robson and P. Smith, J. Chem. Soc, Chem. Commun. 488 (1990).
- [184] V.A. Igonin, O.I. Shchegolikhina, S.V. Lindeman, M.M. Levitsky, Yu.T. Struchkov and A.A. Zhdanov, J. Organometal. Chem. 423, 351 (1992).
- [185] E. Agostinelli, D.B. Dell Amico, F. Colderazzo, F. Fioroni and G. Pelizzi, Gaz. Chim. Ital. 118, 729 (1988).
- [186] V. McKee and S.S. Tandon, Inorg. Chem. 28, 2901 (1989).
- [187] J. Galy, A. Mosset, I. Grenthe, I. Puigdomeneck, B. Sjöberg and F. Hulten, J. Amer. Chem. Soc. 109, 380 (1987).
- [188] G.A. Ardizzoia, M.A. Angaroni, G. LaMonica, F. Cariati, M. Moret and N. Masciocehi, J. Chem. Soc. Chem. Commun. 1021 (1990).
- [189] U. Turjeinen, R. Hämälainen and J. Reedijk, Inorg. Chim. Acta 134, 87 (1987).
- [190] R.E. Norman, N.J. Rose and R.E. Stenkamp, J. Chem. Soc., Dalton Trans. 2905 (1987).
- [191] S.S. Tandon, L.K. Thompson and J.N. Bridson, J. Chem. Soc. Chem. Commun. 911 (1992).